Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37569539

ABSTRACT

A method for the grafting of unsymmetrical A2BC-type 5,15-bis(4-butoxyphenyl)-10-(4-carboxyphenyl)-20-(phenanthrenoimidazolyl)-porphyrin onto the surface of nanostructured aluminum oxyhydroxide modified with a single SiO2 layer (NAOM) was successfully developed. A straightforward procedure towards surface modification of NAOM allowed us to prepare a new porphyrin-containing hybrid material. The obtained 3D heterostructure was extensively characterized using XPS, TEM and diffuse reflectance spectroscopy. Structural and morphological peculiarities of the inorganic support before and after the immobilization procedure were studied and discussed in detail. The stability of the material against leaching and the porphyrin immobilization ratio ca. 14% by weight were also revealed.


Subject(s)
Nanostructures , Porphyrins , Porphyrins/chemistry , Aluminum , Silicon Dioxide/chemistry , Prospective Studies
2.
Materials (Basel) ; 16(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37241306

ABSTRACT

Chamber protection is a promising and quickly developing method of vapor-phase protection of metals against atmospheric corrosion by inhibitors. It was shown that chamber treatment with 2-ethylhexanoic acid (EHA) efficiently inhibits the initiation of zinc corrosion. The optimum conditions (temperature and duration) of zinc treatment with vapors of this compound were determined. If these conditions are met, adsorption films of EHA with thicknesses up to 100 nm are formed on the metal surface. It was found that their protective properties increase during the first day as zinc is exposed to air after chamber treatment. The anticorrosive action of adsorption films is due both to the surface being shielded from the corrosive environment and to the inhibition of corrosion processes on the active surface of the metal. Corrosion inhibition was caused by the ability of EHA to convert zinc to the passive state and inhibit its local anionic depassivation.

3.
Materials (Basel) ; 15(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36556722

ABSTRACT

The process of the hydrothermal synthesis of hierarchically organized nanomaterials with the core-shell structure with the composition ((CeO2)0.8(Sm2O3)0.2)@NiO was studied, and the prospects for their application in the formation of planar composite structures using microextrusion printing were shown. The hydrothermal synthesis conditions of the (CeO2)0.8(Sm2O3)0.2 nanospheres were determined, and the approach to their surface modification by growing the NiO shell with the formation of core-shell structures equally distributed between the larger nickel(II) oxide nanosheets was developed. The resulting nanopowder was used as a functional ink component in the microextrusion printing of the corresponding composite coating. The microstructure of the powders and the oxide coating was studied by scanning (SEM) and transmission electron microscopy (TEM), the crystal structure was explored by X-ray diffraction analysis (XRD), the set of functional groups in the powders was studied by Fourier-transform infrared spectroscopy (FTIR) spectroscopy, and their thermal behavior in an air flow by synchronous thermal analysis (TGA/DSC). The electronic state of the chemical elements in the resulting coating was studied using X-ray photoelectron spectroscopy (XPS). The surface topography and local electrophysical properties of the composite coating were studied using atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). Using impedance spectroscopy, the temperature dependence of the specific electrical conductivity of the obtained composite coating was estimated.

4.
Materials (Basel) ; 15(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35955295

ABSTRACT

The composition, structure, and protective and hydrophobic properties of nanoscale films formed layer-by-layer in solutions of sodium dodecylphosphonate (SDDP) and vinyltrimethoxysilane or n-octyltriethoxysilane (OTES) on the zinc surface with different morphologies were studied by SEM, XPS, water contact angle measurements, and electrochemical and corrosion tests. The protective, hydrophobic properties of phosphonate-siloxane films on zinc and their stability in a corrosive media are determined both by the initial surface morphology and composition of the surface oxide layer, and by the nature of inhibitors. It was shown that preliminary laser texturing of the zinc surface is preferable than chemical etching to enhance the anticorrosive properties of the resulting thin films. The most stable films with excellent superhydrophobic and protective properties in atmospheres of high humidity and salt spray are formed on the zinc surface with fractal morphology during layer-by-layer passivation with SDDP and OTES.

5.
Materials (Basel) ; 15(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35407753

ABSTRACT

New hybrid composite coatings (HCCs) on hot-dip galvanized steel (HDGS) were obtained using electrophoresis (cathodic polarization (CP)) and sol-gel technology. For this purpose, a technique for the preparation of a cationic precursor based on TiCl4 and aminopropyltriethoxysilane was developed. Electrophoresis of the charged particles of the precursor and organosilanes promotes the production of denser sol-gel coatings with improved adhesion. Using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS) methods, the formation mechanism and protective properties of HCC on galvanized steel were investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...