Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(6): e0235083, 2020.
Article in English | MEDLINE | ID: mdl-32579618

ABSTRACT

Cognitive flexibility is the ability to switch between different concepts or to adapt goal-directed behavior in a changing environment. Although, cognitive research on this ability has long been focused on the individual mind, it is becoming increasingly clear that cognitive flexibility plays a central role in our social life. This is particularly evident in turn-taking in verbal conversation, where cognitive flexibility of the individual becomes part of social flexibility in the dyadic interaction. In this work, we introduce a model that reveals different parameters that explain how people flexibly handle unexpected events in verbal conversation. In order to study hypotheses derived from the model, we use a novel experimental approach in which thirty pairs of participants engaged in a word-by-word interaction by taking turns in generating sentences word by word. Similar to well established individual cognitive tasks, participants needed to adapt their behavior in order to respond to their co-actor's last utterance. With our experimental approach we could manipulate the interaction between participants: Either both participants had to construct a sentence with a common target word (congruent condition) or with distinct target words (incongruent condition). We further studied the relation between the interactive Word-by-Word task measures and classical individual-centered, cognitive tasks, namely the Number-Letter task, the Stop-Signal task, and the GoNogo task. In the Word-by-Word task, we found that participants had faster response times in congruent compared to incongruent trials, which replicates the primary findings of standard cognitive tasks measuring cognitive flexibility. Further, we found a significant correlation between the performance in the Word-by-Word task and the Stop-Signal task indicating that participants with a high cognitive flexibility in the Word-by-Word task also showed high inhibition control.


Subject(s)
Cognition/physiology , Psychomotor Performance/physiology , Reaction Time/physiology , Speech Intelligibility/physiology , Adult , Communication , Female , Humans , Male , Neuropsychological Tests , Speech Perception/physiology , Young Adult
2.
Behav Res Methods ; 52(1): 317-341, 2020 02.
Article in English | MEDLINE | ID: mdl-30963463

ABSTRACT

Investigating cognitive processes by analyzing mouse movements has become a popular method in many psychological disciplines. When creating mouse-tracking experiments, researchers face many design choices-for example, whether participants indicate responses by clicking a button or just by entering the button area. Hitherto, numerous different settings have been employed, but little is known about how these methodological differences affect mouse-tracking data. We systematically investigated the influences of three central design factors, using a classic mouse-tracking paradigm in which participants classified typical and atypical exemplars. In separate experiments, we manipulated the response indication, mouse sensitivity, and starting procedure. The core finding that mouse movements deviate more toward the nonchosen option for atypical exemplars was replicated in all conditions. However, the size of this effect varied. Specifically, it was larger when participants indicated responses via click and when they were instructed to initialize the movement early. Trajectory shapes also differed between setups. For example, a dynamic start led to mostly curved trajectories, responses via click led to a mix of straight and "change-of-mind" trajectories, and responses via touch led to mostly straight trajectories. Moreover, the distribution of curvature indices was classified as bimodal in some setups and as unimodal in others. Because trajectory curvature and shape are frequently used to make inferences about psychological theories, such as differentiating between dynamic and dual-system models, this study shows that the specific design must be carefully considered when drawing theoretical inferences. All methodological designs and analyses were implemented using open-source software and are available from https://osf.io/xdp7a/.


Subject(s)
Movement , Adolescent , Adult , Computers , Female , Humans , Male , Psychological Theory , Software , Touch , Young Adult
3.
4.
Atten Percept Psychophys ; 81(7): 2538-2557, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31691102

ABSTRACT

From an embodiment perspective, action and cognition influence each other constantly. This interaction has been utilized in mouse-tracking studies to infer cognitive states from movements, assuming a continuous manifestation of cognitive processing into movement. However, it is mostly unknown how this manifestation is affected by the variety of possible design choices in mouse-tracking paradigms. Here we studied how three design factors impact the manifestation of cognition into movement in a Simon task with mouse tracking. We varied the response selection (i.e., with or without clicking), the ratio between hand and mouse cursor movement, and the location of the response boxes. The results show that all design factors can blur or even prevent the manifestation of cognition into movement, as reflected by a reduction in movement consistency and action dynamics, as well as by the adoption of unsuitable movement strategies. We conclude that deliberate and careful design choices in mouse-tracking experiments are crucial to ensuring a continuous manifestation of cognition in movement. We discuss the importance of developing a standard practice in the design of mouse-tracking experiments.


Subject(s)
Cognition/physiology , Motion Perception/physiology , Movement/physiology , Photic Stimulation/methods , Reaction Time/physiology , Adolescent , Adult , Female , Hand/physiology , Humans , Male , Young Adult
5.
Behav Res Methods ; 51(5): 2356-2377, 2019 10.
Article in English | MEDLINE | ID: mdl-30684228

ABSTRACT

Mouse-tracking is an increasingly popular process-tracing method. It builds on the assumption that the continuity of cognitive processing leaks into the continuity of mouse movements. Because this assumption is the prerequisite for meaningful reverse inference, it is an important question whether the assumed interaction between continuous processing and movement might be influenced by the methodological setup of the measurement. Here we studied the impacts of three commonly occurring methodological variations on the quality of mouse-tracking measures, and hence, on the reported cognitive effects. We used a mouse-tracking version of a classical intertemporal choice task that had previously been used to examine the dynamics of temporal discounting and the date-delay effect (Dshemuchadse, Scherbaum, & Goschke, 2013). The data from this previous study also served as a benchmark condition in our experimental design. Between studies, we varied the starting procedure. Within the new study, we varied the response procedure and the stimulus position. The starting procedure had the strongest influence on common mouse-tracking measures, and therefore on the cognitive effects. The effects of the response procedure and the stimulus position were weaker and less pronounced. The results suggest that the methodological setup crucially influences the interaction between continuous processing and mouse movement. We conclude that the methodological setup is of high importance for the validity of mouse-tracking as a process-tracing method. Finally, we discuss the need for standardized mouse-tracking setups, for which we provide recommendations, and present two promising lines of research toward obtaining an evidence-based gold standard of mouse-tracking.


Subject(s)
Delay Discounting , Adult , Benchmarking , Computers , Female , Humans , Male , Mental Processes , Movement , Research Design , Young Adult
6.
Behav Brain Res ; 351: 178-187, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29885381

ABSTRACT

Emotional reactivity varies across the menstrual cycle although physiological findings are not entirely consistent. We assessed facial EMG and heart rate (HR) changes in healthy free cycling women (N = 45) with an emotional startle paradigm both during the early follicular and the late luteal phase, verified by repeated salivary 17ß-estradiol, progesterone and testosterone assessments. Cycle phase impacted startle responses with larger magnitudes during the luteal phase. Notably, this effect was only present when premenstrual symptoms and sequence of lab sessions were included as co-variates. At rest, participants showed a tendency towards higher HR and reduced high frequency (HF) power during the luteal phase indicating reduced parasympathetic tone. HF power was also negatively associated with startle magnitudes. HR changes in response to emotional images differed between the two cycle phases. Initial HR deceleration was more marked during the follicular phase particularly when viewing negative pictures. However, cycle phase did not significantly impact corrugator and zygomaticus activity in response to emotional pictures. Among the three gonadal steroids, correlation patterns were most consistent for testosterone. During the follicular phase, testosterone was associated with zygomaticus activity while viewing neutral or positive pictures and with less pronounced HR deceleration in response to negative images. During the luteal phase, testosterone was negatively associated with fear potentiated startle. The findings underscore the importance of considering menstrual cycle phase when investigating physiological indicators of emotion. However, the modulating effect of premenstrual symptoms also emphasizes potential inter-individual differences.


Subject(s)
Emotions/physiology , Facial Muscles/physiology , Heart Rate/physiology , Menstrual Cycle/physiology , Menstrual Cycle/psychology , Reflex, Startle/physiology , Adult , Electrocardiography , Electromyography , Estradiol/metabolism , Female , Humans , Parasympathetic Nervous System/physiology , Premenstrual Syndrome/physiopathology , Premenstrual Syndrome/psychology , Progesterone/metabolism , Saliva/metabolism , Testosterone/metabolism , Visual Perception/physiology , Young Adult
7.
Front Psychol ; 6: 1244, 2015.
Article in English | MEDLINE | ID: mdl-26379580

ABSTRACT

Cognitive flexibility is a central component of executive functions that allow us to behave meaningful in an ever changing environment. Here, we support a distinction between two different types of cognitive flexibility, shifting flexibility and spreading flexibility, based on independent underlying mechanisms commonly subsumed under the ability to shift cognitive sets. We use a homonym relatedness judgment task and combine it with mouse tracking to show that these two types of cognitive flexibility follow independent temporal patterns in their influence on participants' mouse movements during relatedness judgments. Our results are in concordance with the predictions of a neural field based framework that assumes the independence of the two types of flexibility. We propose that future studies about cognitive flexibility in the area of executive functions should take independent types into account, especially when studying moderators of cognitive flexibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...