Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Plant Sci ; 10(6): e11503, 2022.
Article in English | MEDLINE | ID: mdl-36518948

ABSTRACT

Premise: The shape of young cotton (Gossypium) fibers varies within and between commercial cotton species, as revealed by previous detailed analyses of one cultivar of G. hirsutum and one of G. barbadense. Both narrow and wide fibers exist in G. hirsutum cv. Deltapine 90, which may impact the quality of our most abundant renewable textile material. More efficient cellular phenotyping methods are needed to empower future research efforts. Methods: We developed semi-automated imaging methods for young cotton fibers and a novel machine learning algorithm for the rapid detection of tapered (narrow) or hemisphere (wide) fibers in homogeneous or mixed populations. Results: The new methods were accurate for diverse accessions of G. hirsutum and G. barbadense and at least eight times more efficient than manual methods. Narrow fibers dominated in the three G. barbadense accessions analyzed, whereas the three G. hirsutum accessions showed a mixture of tapered and hemisphere fibers in varying proportions. Discussion: The use or adaptation of these improved methods will facilitate experiments with higher throughput to understand the biological factors controlling the variable shapes of young cotton fibers or other elongating single cells. This research also enables the exploration of links between early cell shape and mature cotton fiber quality in diverse field-grown cotton accessions.

2.
Planta ; 253(2): 47, 2021 Jan 23.
Article in English | MEDLINE | ID: mdl-33484350

ABSTRACT

MAIN CONCLUSION: Variable cotton fiber diameter is set early in anisotropic elongation by cell-type-specific processes involving the temporal and spatial regulation of microtubules in the apical region. Cotton fibers are single cells that originate from the seed epidermis of Gossypium species. Then, they undergo extreme anisotropic elongation and limited diametric expansion. The details of cellular morphogenesis determine the quality traits that affect fiber uses and value, such as length, strength, and diameter. Lower and more consistent diameter would increase the competitiveness of cotton fiber with synthetic fiber, but we do not know how this trait is controlled. The complexity of the question is indicated by the existence of fibers in two major width classes in the major commercial species: broad and narrow fibers exist in commonly grown G. hirsutum, whereas G. barbadense produces only narrow fiber. To further understand how fiber diameter is controlled, we used ovule cultures, morphology measurements, and microtubule immunofluorescence to observe the effects of microtubule antagonists on fiber morphology, including shape and diameter within 80 µm of the apex. The treatments were applied at either one or two days post-anthesis during different stages of fiber morphogenesis. The results showed that inhibiting the presence and/or dynamic activity of microtubules caused larger diameter tips to form, with greater effects often observed with earlier treatment. The presence and geometry of a microtubule-depleted-zone below the apex were transiently correlated with the apical diameter of the narrow tip types. Similarly, the microtubule antagonists had somewhat different effects between tip types. Overall, the results demonstrate cell-type-specific mechanisms regulating fiber expansion within 80 µm of the apex, with variation in the impact of microtubules between tip types and over developmental time.


Subject(s)
Cotton Fiber , Gossypium , Microtubules , Gene Expression Regulation, Plant , Microtubules/metabolism , Phenotype
3.
Planta ; 249(5): 1551-1563, 2019 May.
Article in English | MEDLINE | ID: mdl-30729290

ABSTRACT

MAIN CONCLUSION: A novel method for culturing ovules of Gossypium barbadense allowed in vitro comparisons with Gossypium hirsutum and revealed variable roles of microtubules in controlling cotton fiber cell expansion. Cotton fibers undergo extensive elongation and secondary wall thickening as they develop into our most important renewable textile material. These single cells elongate at the apex as well as elongating and expanding in diameter behind the apex. These multiple growth modes represent an interesting difference compared to classical tip-growing cells that needs to be explored further. In vitro ovule culture enables experimental analysis of the controls of cotton fiber development in commonly grown Gossypium hirsutum cotton, but, previously, there was no equivalent system for G. barbadense, which produces higher quality cotton fiber. Here, we describe: (a) how to culture the ovules of G. barbadense successfully, and (b) the results of an in vitro experiment comparing the role of microtubules in controlling cell expansion in different zones near the apex of three types of cotton fiber tips. Adding the common herbicide fluridone, 1-Methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-4(1H)-pyridinone, to the medium supported G. barbadense ovule culture, with positive impacts on the number of useful ovules and fiber length. The effect is potentially mediated through inhibited synthesis of abscisic acid, which antagonized the positive effects of fluridone. Fiber development was perturbed by adding colchicine, a microtubule antagonist, to ovules of G. barbadense and G. hirsutum cultured 2 days after flowering. The results supported the zonal control of cell expansion in one type of G. hirsutum fiber tip and highlighted differences in the role of microtubules in modulating cell expansion between three types of cotton fiber tips.


Subject(s)
Gossypium/cytology , Gossypium/metabolism , Microtubules/metabolism , Cotton Fiber , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Gossypium/drug effects , Microtubules/drug effects , Pyridones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...