Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 218(1): 29-41, 2011 Mar 17.
Article in English | MEDLINE | ID: mdl-21093492

ABSTRACT

Autism spectrum disorder (ASD) diagnoses are behaviorally based with no defined universal biomarkers, occur at a 1:110 ratio in the population, and predominantly affect males compared to females at approximately a 4:1 ratio. One approach to investigate and identify causes of ASD is to use organisms that display abnormal behavioral responses that model ASD-related impairments. This study describes a novel transgenic mouse, MALTT, which was generated using a forward genetics approach. It was determined that the transgene integrated within a non-coding region on the X chromosome. The MALTT line exhibited a complete repertoire of ASD-like behavioral deficits in all three domains required for an ASD diagnosis: reciprocal social interaction, communication, and repetitive or inflexible behaviors. Specifically, MALTT male mice showed deficits in social interaction and interest, abnormalities in pup and juvenile ultrasonic vocalization communications, and exhibited a repetitive stereotypy. Abnormalities were also observed in the domain of sensory function, a secondary phenotype prevalently associated with ASD. Mapping and expression studies suggested that the Fam46 gene family may be linked to the observed ASD-related behaviors. The MALTT line provides a unique genetic model for examining the underlying biological mechanisms involved in ASD-related behaviors.


Subject(s)
Aggression/psychology , Autistic Disorder/psychology , Disease Models, Animal , Social Behavior , Analysis of Variance , Animals , Autistic Disorder/genetics , Female , Male , Mice , Mice, Transgenic , Sensory Gating , Stereotyped Behavior , Vocalization, Animal
2.
Behav Neurosci ; 122(3): 710-5, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18513141

ABSTRACT

Fragile X syndrome (FXS) results from the loss of expression of the fragile X mental retardation (FMR1) gene. Individuals affected by FXS experience many behavioral problems, including cognitive impairment, hyperactivity, social anxiety, and autistic-like behaviors. A mouse model of Fmr1 deficiency (Fmr1KO) exhibits several similar behavioral phenotypes, including alterations in social behavior. In an earlier study, Fmr1 knockout mice carrying a yeast-artificial chromosome (YAC) transgene that over-expresses normal human FMRP (KOYAC) showed a correction or overcorrection of some behavioral responses, such as hyperactivity and anxiety-related responses. This report presents results from a study examining transgenic rescue of abnormal social responses in Fmr1KO mice. Relative to their wild-type (WT) littermates, Fmr1KO mice made more active social approaches to standard C57BL/6 partner mice in a direct social interaction test, a result consistent with a previous study. KOYAC mice showed fewer active approaches to partners than the WT or Fmr1KO littermates, indicating correction of this phenotype. This finding expands the number of murine behavioral responses caused by Fmr1 deficiency and corrected by overexpression of human FMRP.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Interpersonal Relations , Mice, Transgenic/physiology , Phenotype , Animals , Appetitive Behavior/physiology , Behavior, Animal/physiology , Exploratory Behavior/physiology , Humans , Locomotion/genetics , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...