Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 135(7): 2481-2500, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35674778

ABSTRACT

KEY MESSAGE: We demonstrate genetic variation for quantitative resistance against important fungal pathogens in lettuce and its wild relatives, map loci conferring resistance and predict key molecular mechanisms using transcriptome profiling. Lactuca sativa L. (lettuce) is an important leafy vegetable crop grown and consumed globally. Chemicals are routinely used to control major pathogens, including the causal agents of grey mould (Botrytis cinerea) and lettuce drop (Sclerotinia sclerotiorum). With increasing prevalence of pathogen resistance to fungicides and environmental concerns, there is an urgent need to identify sources of genetic resistance to B. cinerea and S. sclerotiorum in lettuce. We demonstrated genetic variation for quantitative resistance to B. cinerea and S. sclerotiorum in a set of 97 diverse lettuce and wild relative accessions, and between the parents of lettuce mapping populations. Transcriptome profiling across multiple lettuce accessions enabled us to identify genes with expression correlated with resistance, predicting the importance of post-transcriptional gene regulation in the lettuce defence response. We identified five genetic loci influencing quantitative resistance in a F6 mapping population derived from a Lactuca serriola (wild relative) × lettuce cross, which each explained 5-10% of the variation. Differential gene expression analysis between the parent lines, and integration of data on correlation of gene expression and resistance in the diversity set, highlighted potential causal genes underlying the quantitative trait loci.


Subject(s)
Lactuca , Quantitative Trait Loci , Gene Expression Profiling , Lactuca/genetics , Lactuca/microbiology , Plant Leaves/genetics
2.
Pest Manag Sci ; 76(2): 553-560, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31282078

ABSTRACT

BACKGROUND: Vine weevil, Otiorhynchus sulcatus F. (Coleoptera: Curculionidae), is one of the most economically important pest species of berry and ornamental crops globally. Monitoring this nocturnal pest can be difficult and time consuming and the efficacy of current tools is uncertain. Without effective monitoring tools, implementation of integrated pest management strategies is challenging. This study tests the relative efficacy of a range of vine weevil monitoring tools. Whether host-plant volatiles and weevil feeding experience influence vine weevil capture is also tested. RESULTS: Monitoring tool efficacy differed overall between the six monitoring tool designs tested and ranged from catches of 0.4% to 26.7% under semi-field conditions. Previous feeding experience influenced vine weevil behavior. In yew conditioned populations, 39% of the weevils responded to and were retained in the trap baited with yew foliage while 37% of weevils from Euonymus fortunei conditioned populations responded to and were retained in the trap baited with E. forunei foliage. A simple synthetic lure consisting of (Z)-2-pentenol + methyl eugenol also increased vine weevil catches compared with an unbaited trap. CONCLUSION: Demonstrating differences in the efficacy of different monitoring tool designs is an important first step for developing improved methods for monitoring vine weevil populations within crops. This study presents the first direct comparison of vine weevil monitoring tool designs and indicates that trap efficacy can be improved by baiting with host-plant material or a synthetic lure based on host-plant volatiles. © 2019 Society of Chemical Industry.


Subject(s)
Weevils , Animals , Crops, Agricultural , Fruit , Insect Control , Pheromones
SELECTION OF CITATIONS
SEARCH DETAIL
...