Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
2.
RSC Adv ; 12(45): 29329-29337, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36320754

ABSTRACT

Pollution by hexavalent chromium is a growing, global problem. Its presence in public water systems is often the result of industrial activities, both past and present. In this study, tricalcium aluminate (C3A, Ca3Al2O6) is added to solutions of varying concentrations of potassium chromate (K2CrO4) and samples of both the solid and liquid are taken at various time intervals to monitor the removal of chromium from the solutions. Solution concentrations of 0.2 M, 0.1 M, 0.02 M, and 0.01 M are used, and the chromium concentration is found to reduce in all cases. For the 0.02 M solution the chromium concentration is reduced from 1040 ppm to 3.1 ppm in 1 week, and the chromium concentration of the 0.01 M solution is reduced from 520 ppm to 0.26 ppm in only one day of reaction with the C3A. The chromium removed from solution is identified in the solid products, which were fully characterised as being a mixture of ettringite (Ca6[Al(OH)6]2(CrO4)3·26H2O) and monochromate (Ca4[Al(OH)6]2CrO4·8H2O) phases from analysis of Powder X-ray Diffraction and Fourier Transform Infrared Spectroscopy data. The work presented here is a proof of concept study to investigate C3A as a potential material for the removal of hexavalent chromium from solution. The results from this study are initial steps towards development of this as a technology for hexavalent chromium remediation.

3.
ACS Sustain Chem Eng ; 10(20): 6755-6765, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35634266

ABSTRACT

The content of polycyclic aromatic hydrocarbons (PAHs) in biochar has been studied extensively; however, the links between biomass feedstock, production process parameters, and the speciation of PAHs in biochar are understudied. Such an understanding is crucial, as the health effects of individual PAHs vary greatly. Naphthalene (NAP) is the least toxic of the 16 US EPA PAHs but comprises the highest proportion of PAHs in biochar. Therefore, we investigate which parameters favor high levels of non-NAP PAHs (∑16 US EPA PAHs without NAP) in a set of 73 biochars. On average, the content of non-NAP PAHs was 9 ± 29 mg kg-1 (median 0.9 mg kg-1). Importantly, during the production of the biochars with the highest non-NAP PAH contents, the conditions in the post-pyrolysis area, where pyrolysis vapors and biochar are separated, favored condensation and deposition of PAHs on biochar. Under these conditions, NAP condensed to a lower degree because of its high vapor pressure. In biochars not contaminated through this process, the average non-NAP content was only 2 ± 3 mg kg-1 (median 0.5 mg kg-1). Uneven heat distribution and vapor trapping during pyrolysis and cool zones in the post-pyrolysis area need to be avoided. This demonstrates that the most important factor yielding high contents of toxic PAHs in biochar was neither a specific pyrolysis parameter nor the feedstock but the pyrolysis unit design, which can be modified to produce clean and safe biochar.

4.
Patient Educ Couns ; 105(7): 2174-2182, 2022 07.
Article in English | MEDLINE | ID: mdl-34895775

ABSTRACT

OBJECTIVE: To describe the effect of a language-concordant health coaching intervention for Spanish-speaking patients with limited English proficiency (LEP) and uncontrolled Type 2 Diabetes (T2D) on glycemic control, anxiety, depression, and diabetes self-efficacy. METHODS: 64 patients with T2D were randomly assigned to a control or intervention group. Outcomes were assessed by blood work and surveys pre and post intervention. RESULTS: The mean sample age was 47.8 years (SD=11.3) and 81% were female. HbA1c was not significantly different between groups at baseline. The intervention group's HbA1c was significantly lower at times 2 and 3 than in the control arm (p < .01 and p < .001). There were significant reductions in the intervention group's mean HbA1c levels from baseline 10.37 to midpoint 9.20, p < .001; and from baseline 10.42 to study end 8.14, p < .001. Depression and anxiety scores significantly decreased (p < .05 and p < .001), and diabetes self-efficacy significantly increased (p < .001). CONCLUSION: Health coaching led to statistically significant and clinically meaningful decreases in HbA1c, depression, and anxiety scores among LEP Latinx adults with uncontrolled T2D. PRACTICE IMPLICATIONS: Heath coaching can be conducted in primary care clinics by nurses or advanced practice nurses. The short-term intervention tested here could be adapted to the clinical setting.


Subject(s)
Diabetes Mellitus, Type 2 , Mentoring , Adult , Diabetes Mellitus, Type 2/therapy , Female , Glycated Hemoglobin , Health Personnel , Hispanic or Latino , Humans , Language , Male , Middle Aged
5.
IUCrJ ; 8(Pt 6): 963-972, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34804548

ABSTRACT

Metatorbernite [Cu(UO2)2(PO4)2·8H2O] is a promising remediation material for environmental uranium contamination. Previous X-ray diffraction studies have been unable to definitively locate hydrogen positions within metatorbernite, which are key to determining the hydrogen-bond network that helps to stabilize the structure. Here, hydrogen positions have been determined using a combination of neutron powder diffraction and the computational modelling technique ab initio random structure searching (AIRSS). Atomic coordinates determined through Rietveld analysis of neutron powder diffraction data are in excellent agreement with the minimum energy configuration predicted by AIRSS; thus, simulations confirm that our proposed model likely represents the global minimum configuration. Two groups of water molecules exist within the metatorbernite structure: free water and copper-coordinating water. Free water molecules are held within the structure by hydrogen bonding only, whilst the coordinating water molecules bond to copper in the equatorial positions to produce a 4 + 2 Jahn-Teller octahedra. The successful agreement between neutron powder diffraction data and AIRSS suggests that this combined approach has excellent potential for the study of other (trans)uranium materials in which hydrogen bonding plays a key role in phase stability.

6.
Chemosphere ; 254: 126859, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32957279

ABSTRACT

Understanding the long-term fate, stability, and bioavailability of uranium (U) in the environment is important for the management of nuclear legacy sites and radioactive wastes. Analysis of U behavior at natural analogue sites permits evaluation of U biogeochemistry under conditions more representative of long-term equilibrium. Here, we have used bulk geochemical and microbial community analysis of soils, coupled with X-ray absorption spectroscopy and µ-focus X-ray fluorescence mapping, to gain a mechanistic understanding of the fate of U transported into an organic-rich soil from a pitchblende vein at the UK Needle's Eye Natural Analogue site. U is highly enriched in the Needle's Eye soils (∼1600 mg kg-1). We show that this enrichment is largely controlled by U(VI) complexation with soil organic matter and not U(VI) bioreduction. Instead, organic-associated U(VI) seems to remain stable under microbially-mediated Fe(III)-reducing conditions. U(IV) (as non-crystalline U(IV)) was only observed at greater depths at the site (>25 cm); the soil here was comparatively mineral-rich, organic-poor, and sulfate-reducing/methanogenic. Furthermore, nanocrystalline UO2, an alternative product of U(VI) reduction in soils, was not observed at the site, and U did not appear to be associated with Fe-bearing minerals. Organic-rich soils appear to have the potential to impede U groundwater transport, irrespective of ambient redox conditions.


Subject(s)
Groundwater/chemistry , Radioactive Waste/analysis , Soil/chemistry , Uranium/analysis , Water Pollutants, Radioactive/analysis , Ferric Compounds , Soil Microbiology , Uranium/chemistry , Uranium Compounds/analysis , X-Ray Absorption Spectroscopy
8.
J Environ Manage ; 215: 49-56, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29554627

ABSTRACT

Cadmium (Cd) contaminated soils from the Mae Sot district in northwest Thailand, a region in which rice Cd concentrations often exceed health limits (0.4 mg/kg) set by the World Health Organisation, were examined for isotopically exchangeable Cd (Cd E values using a 111Cd spike) to determine how this rates as a predictor of rice grain Cd in comparison with soil total Cd and solution extractable Cd (using the commonly applied BCR scheme and, in an attempt to distinguish carbonate bound forms, the Tessier soil sequential extraction scheme reagents). Step 1 of the BCR scheme (0.11 M CH3COOH) and step 1 of the Tessier scheme (1M MgCl2) showed the highest R2 values in regressions with rice Cd (91% and 90%, respectively), but all predictors were strongly linked to rice Cd (p < 0.001) and could be used for prediction purposes. One soil, of the six tested, was an exception to this, where all predictors over-estimated grain Cd by a factor of 2.5-5.7, suggesting that rice grain Cd had been restricted here by the differing flooding regime and subsequent changes to redox conditions. E values and Tessier step 1 extractions were closely related, indicating that these measurements access similar pools of soil Cd. Separately, the isotopic exchangeability (representing bioavailability) of Cd was also assessed in two soils amended with rice husk and miscanthus biochars (0, 1, 5, 10, 15 and 20% w/w) in order to assess the utility of the biochars as a soil amendment for immobilising Cd in situ. One soil showed significant reductions in Cd E value at 5% rice husk biochar addition and at 15% miscanthus biochar addition however, based on the E value-rice grain Cd regression relationship previously established, the E values in the amended soils still predicted for a rice Cd concentration above the health limit. In the second soil, neither of the biochars successfully reduced the Cd E value. This indicates that further work is needed to customise biochar properties to suit specific soil and contaminant situations if they are to be used successfully for remediation of metal contaminated soils.


Subject(s)
Cadmium/pharmacokinetics , Charcoal , Soil Pollutants/pharmacology , Biological Availability , Cadmium/chemistry , Isotopes , Oryza/chemistry , Soil , Soil Pollutants/chemistry , Thailand
9.
Environ Sci Eur ; 30(1): 2, 2018.
Article in English | MEDLINE | ID: mdl-29387519

ABSTRACT

Based on experimental data from laboratory and field, numerous authors have raised concern that exposure to glyphosate-based herbicides (GBHs) may pre-dispose crops to damage by microbial pathogens. In this review, we distinguish and evaluate two principal pathways by which GBHs may affect the susceptibility of crops to disease: pathway 1-via disruptions to rhizosphere microbial ecology, and pathway 2-via restriction of nutrients to crops. We conclude that GBHs have the potential to undermine crop health in a number of ways, including: (i) impairment of the innate physiological defences of glyphosate-sensitive (GS) cultivars by interruption of the shikimic acid pathway; (ii) impairment of physiological disease defences has also been shown to occur in some glyphosate-resistant (GR) cultivars, despite their engineered resistance to glyphosate's primary mode of action; (iii) interference with rhizosphere microbial ecology (in particular, GBHs have the potential to enhance the population and/or virulence of some phytopathogenic microbial species in the crop rhizosphere); and finally, (iv) the as yet incompletely elucidated reduction in the uptake and utilisation of nutrient metals by crops. Future progress will best be achieved when growers, regulators and industry collaborate to develop products, practices and policies that minimise the use of herbicides as far as possible and maximise their effectiveness when used, while facilitating optimised food production and security.

10.
Anal Chem ; 89(8): 4382-4386, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28333435

ABSTRACT

Laser desorption/ionization (LDI) was investigated as an ionization method for Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) studies of natural organic matter (NOM). Using International Humic Substances Society standards, Suwannee River fulvic acid (SRFA) and Suwannee River natural organic matter (SRNOM), LDI was found to ionize a very similar set of compounds (>90% of molecular formulas identity) to the matrix assisted laser desorption/ionization (MALDI), while producing higher quality spectra. A comparison of electrospray ionization (ESI) and LDI spectra showed that different types of compounds are ionized by these methods with only 9.9% of molecular formulas common to both. The compounds ionized by LDI/MALDI belong to low oxygen classes (maximum number of species for O7-O9), while ESI compounds belong to higher oxygen classes (maximum number of species for O14-O16). Compounds ionized by LDI can be classified as aliphatic, aromatic, and condensed aromatics in approximately equal measure, while aliphatic compounds dominated the ESI spectra of SRFA. In order to maximize the coverage of molecular species, LDI, as a particularly convenient and readily deployable ionization method, should be used routinely in combination with other ionization methods, such as ESI, for FTICR MS studies of NOM.

11.
Sci Total Environ ; 569-570: 496-506, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27362631

ABSTRACT

In this study, 19 biochars from marginal biomass, representing all major biomass groups (woody materials, grass, an aquatic plant, anthropogenic wastes) were investigated regarding their content of available potentially toxic elements (PTEs) and nutrients (determined by NH4NO3-extractions) and their effects on cress (Lepidium sativum) seedling growth. The objective was to assess the potential and actual effects of biochar with increased PTE content on plant growth in the context of use in soil amendments and growing media. It showed that the percentage of available PTEs was highest for biochars produced at the highest treatment temperature (HTT) of 750°C. On average, however, for all 19 biochars, the percentage availability of Cu, Cr, Ni and Zn (<1.5% for all) was similar to the percentage availability reported in the literature for the same elements in soils at similar pH values which is a highly important finding. Most biochars exceeded German soil threshold values for NH4NO3-extractable PTEs, such as Zn (by up to 25-fold), As and Cd. Despite this, cress seedling growth tests with 5% biochar in sand did not show any correlations between inhibitory effects (observed in 5 of the 19 biochars) and the available PTE concentrations. Instead, the available K concentration and biochar pH were highly significantly, negatively correlated with seedling growth (K: p<0.001, pH: p=0.004). K had the highest available concentration of all elements and the highest percentage availability (47.7±19.7% of the total K was available). Consequently, available K contributed most to the osmotic pressure and high pH which negatively affected the seedlings. Although a potential risk if some of these marginal biomass-derived biochar were applied at high concentrations, e.g. 5% (>100tha(-1)), when applied at agriculturally realistic application rates (1-10tha(-1)), the resulting smaller increases in pH and available K concentration may actually be beneficial for plant growth.


Subject(s)
Charcoal/analysis , Fertilizers/analysis , Lepidium sativum/drug effects , Lepidium sativum/growth & development , Nitrates/metabolism , Soil Pollutants/metabolism , Agriculture/methods , Biodegradation, Environmental , Biomass , Charcoal/administration & dosage , Risk Assessment , Soil Pollutants/analysis , Temperature
12.
Environ Sci Technol ; 50(11): 5817-24, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27144287

ABSTRACT

Groundwater is becoming an increasingly important drinking water source. However, the use of groundwater for potable purposes can lead to chronic human exposure to geogenic contaminants, for example, uranium. Nanofiltration (NF) and reverse osmosis (RO) processes are used for drinking water purification, and it is important to understand how contaminants interact with membranes since accumulation of contaminants to the membrane surface can lead to fouling, performance decline and possible breakthrough of contaminants. During the current study laboratory experiments were conducted using NF (TFC-SR2) and RO (BW30) membranes to establish the behavior of uranium across pH (3-10) and pressure (5-15 bar) ranges. The results showed that important determinants of uranium-membrane sorption interactions were (i) the uranium speciation (uranium species valence and size in relation to membrane surface charge and pore size) and (ii) concentration polarization, depending on the pH values. The results show that it is important to monitor sorption of uranium to membranes, which is controlled by pH and concentration polarization, and, if necessary, adjust those parameters controlling uranium sorption.


Subject(s)
Drinking Water , Uranium , Hydrogen-Ion Concentration , Membranes, Artificial , Osmosis , Water Purification
13.
Sci Total Environ ; 547: 314-322, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26789369

ABSTRACT

The term "marginal biomass" is used here to describe materials of little or no economic value, e.g. plants grown on contaminated land, food waste or demolition wood. In this study 10 marginal biomass-derived feedstocks were converted into 19 biochars at different highest treatment temperatures (HTT) using a continuous screw-pyrolysis unit. The aim was to investigate suitability of the resulting biochars for land application, judged on the basis of potentially toxic element (PTE) concentration, nutrient content and basic biochar properties (pH, EC, ash, fixed carbon). It was shown that under typical biochar production conditions the percentage content of several PTEs (As, Al, Zn) and nutrients (Ca, Mg) were reduced to some extent, but also that biochar can be contaminated by Cr and Ni during the pyrolysis process due to erosion of stainless steel reactor parts (average+82.8% Cr, +226.0% Ni). This can occur to such an extent that the resulting biochar is rendered unsuitable for soil application (maximum addition +22.5 mg Cr kg(-1) biochar and +44.4 mg Ni kg(-1) biochar). Biomass grown on land heavily contaminated with PTEs yielded biochars with PTE concentrations above recommended threshold values for soil amendments. Cd and Zn were of particular concern, exceeding the lowest threshold values by 31-fold and 7-fold respectively, despite some losses into the gas phase. However, thermal conversion of plants from less severely contaminated soils, demolition wood and food waste anaerobic digestate (AD) into biochar proved to be promising for land application. In particular, food waste AD biochar contained very high nutrient concentrations, making it interesting for use as fertiliser.


Subject(s)
Charcoal , Environmental Restoration and Remediation/methods , Biodegradation, Environmental , Biomass , Carbon , Fertilizers , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Temperature , Wood
14.
Sci Total Environ ; 544: 730-43, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26674702

ABSTRACT

Some 644 individual soil horizons from 169 sites in Scotland were analyzed for Pb concentration and isotopic composition. There were three scenarios: (i) 36 sites where both top and bottom (i.e. lowest sampled) soil horizons were classified as organic in nature, (ii) 67 with an organic top but mineral bottom soil horizon, and (iii) 66 where both top and bottom soil horizons were mineral. Lead concentrations were greater in the top horizon relative to the bottom horizon in all but a few cases. The top horizon (206)Pb/(207)Pb ratio was lesser (outside analytical error) than the corresponding bottom horizon (206)Pb/(207)Pb ratio at (i) 64%, (ii) 94% and (iii) 73% of sites, and greater at only (i) 8%, (ii) 3% and (iii) 8% of sites. A plot of (208)Pb/(207)Pb vs. (208)Pb/(206)Pb ratios showed that the Pb in organic top (i, ii) and bottom (i) horizons was consistent with atmospherically deposited Pb of anthropogenic origin. The (206)Pb/(207)Pb ratio of the organic top horizon in (ii) was unrelated to the (206)Pb/(207)Pb ratio of the mineral bottom horizon as demonstrated by the geographical variation in the negative shift in the ratio, a result of differences in the mineral horizon values arising from the greater influence of radiogenic Pb in the north. In (iii), the lesser values of the (206)Pb/(207)Pb ratio for the mineral top horizon relative to the mineral bottom horizon were consistent with the presence of anthropogenic Pb, in addition to indigenous Pb, in the former. Mean anthropogenic Pb inventories of 1.5 and 4.5 g m(-2) were obtained for the northern and southern halves of Scotland, respectively, consistent with long-range atmospheric transport of anthropogenic Pb (mean (206)Pb/(207)Pb ratio~1.16). For cultivated agricultural soils (Ap), this corresponded to about half of the total Pb inventory in the top 30 cm of the soil column.

15.
Angew Chem Int Ed Engl ; 54(29): 8382-5, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26036217

ABSTRACT

Humic substances, the main component of soil organic matter, could form an integral part of green and sustainable solutions to the soil fertility problem. However, their global-scale application is hindered from both scientific and regulatory perspectives by the lack of understanding of the molecular make-up of these chromatographically inseparable mixtures containing thousands of molecules. Here we show how multidimensional NMR spectroscopy of isotopically tagged molecules enables structure characterization of humic compounds. We illustrate this approach by identifying major substitution patterns of phenolic aromatic moieties of a peat soil fulvic acid, an operational fraction of humic substances. Our methodology represents a paradigm shift in the use of NMR active tags in structure determination of small molecules in complex mixtures. Unlike previous tagging methodologies that focused on the signals of the tags, we utilize tags to directly probe the identity of the molecules they are attached to.

16.
Sci Total Environ ; 529: 213-22, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26011617

ABSTRACT

Elevated concentrations of antimony (Sb), arsenic (As) and lead (Pb) in upland organic-rich soils have resulted from past Sb mining activities at Glendinning, southern Scotland. Transfer of these elements into soil porewaters was linked to the production and leaching of dissolved organic matter and to leaching of spoil material. Sb was predominantly present in truly dissolved (<3 kDa) forms whilst As and Pb were more commonly associated with large Fe-rich/organic colloids. The distinctive porewater behaviour of Sb accounts for its loss from deeper sections of certain cores and its transport over greater distances down steeper sections of the catchment. Although Sb and As concentrations decreased with increasing distance down a steep gully from the main spoil heap, elevated concentrations (~6-8 and 13-20 µg L(-1), respectively) were detected in receiving streamwaters. Thus, only partial attenuation occurs in steeply sloping sections of mining-impacted upland organic-rich soils and so spoil-derived contamination of surface waters may continue over time periods of decades to centuries. CAPSULE ABSTRACT: Production and leaching of dissolved organic matter led to the concomitant transfer of truly dissolved Sb to soil porewaters. Leaching of spoil-derived Sb impacted on the quality of receiving stream waters.

17.
Nicotine Tob Res ; 17(9): 1149-55, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25542917

ABSTRACT

INTRODUCTION: Recommended dosage of oral nicotine replacement therapy (NRT) product is often not achieved in smoking cessation attempts. n-6-propylthiouracil (PROP) bitter taste phenotype may be a potential risk factor for non-adherence to oral NRT products due to their bitter taste. There is limited literature on this phenotype in the context of smoking and none in relation to oral NRT pharmacotherapy. METHODS: The association of PROP taste phenotype with NRT usage and sensory response to products was examined. In a cross-over experimental design, 120 participants received a 1 week supply of nicotine inhalers and 1 week of nicotine lozenges with random assignment to order. Mixed effects linear model analyses were conducted. RESULTS: PROP taste phenotype and taste receptor genotype were not associated with NRT usage or sensory response to NRT, after adjusting for other factors. However, PROP non-tasters used a higher number of lozenges per day (continuous exposure) than nicotine cartridges (intermittent exposure). Unexpectedly, half of baseline PROP non-tasters shifted to taster phenotype 2 weeks after smoking cessation or reduction. Menthol cigarette smokers identified higher NRT strength of sensation scores than nonmenthol smokers. Taste receptor genotype was related to PROP taste phenotype (Kendall τ = .591, p = .0001). CONCLUSIONS: A nonsignificant relationship of PROP phenotype and NRT usage may be associated with NRT under-dosing and limited variance in the outcome variable. PROP non-tasters' greater use of lozenges is consistent with nicotine exposure being less aversive to non-tasters. Further research of this and other factors impacting NRT usage are warranted to effectively inform smoking cessation pharmacotherapy.


Subject(s)
Propylthiouracil , Sensory Receptor Cells/physiology , Smoking Prevention , Taste/physiology , Tobacco Use Cessation Devices , Tobacco Use Disorder/prevention & control , Administration, Oral , Adult , Cross-Over Studies , Female , Genotype , Humans , Male , Middle Aged , Phenotype , Smoking/genetics , Smoking Cessation/methods , Taste/genetics , Tobacco Use Disorder/genetics , Young Adult
18.
Environ Pollut ; 187: 153-61, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24502996

ABSTRACT

The Mae Tao watershed, northwest Thailand, has become contaminated with cadmium (Cd) as a result of zinc ore extraction (Padaeng deposit) in the nearby Thanon-Thongchai mountains. Consumption of contaminated rice has led to documented human health impacts. The aim of this study was to elucidate transfer pathways from creek and canal waters to the paddy field soils near Baan Mae Tao Mai village and to determine the relationship between Cd speciation in the soil and uptake by rice plants. Transfer mainly occurred in association with particulate matter during flooding and channel dredging and, in contrast with many other studies, most of the soil Cd was associated with exchangeable and carbonate-bound fractions. Moreover, there was a linear relationship between soil total Cd and rice grain Cd (R(2) = 0.715), but a stronger relationship between both the Tessier-exchangeable soil Cd and the BCR-exchangeable soil Cd and rice grain Cd (R(2) = 0.898 and 0.862, respectively).


Subject(s)
Cadmium/analysis , Oryza/chemistry , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Agriculture , Mining , Soil/chemistry , Thailand , Zinc
19.
Chem Commun (Camb) ; 50(14): 1694-7, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24395014

ABSTRACT

Mixture 'separation' by NMR is demonstrated through the development of a pseudo 4D NMR experiment, 3D IPAP INEPT-INADEQUATE-HSQC, designed for the structural elucidation of (13)C tagged compounds.

20.
Sci Total Environ ; 424: 239-50, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22436664

ABSTRACT

Recent increases in manganese (Mn) concentrations in surface waters, including drinking water supplies, have triggered renewed interest in its geochemical behaviour in freshwater systems. This study, involving analysis of bottom sediments and ultrafiltered water (stream, loch and sediment porewater) samples, identified changes in aqueous phase speciation of Mn upon entering the loch waters and during its transit from the inflow to the outflow of Loch Bradan, a drinking water reservoir in SW Scotland. Diffusion out of the bottom sediments during calm periods or mixing of porewaters with loch water during resuspension events also released Mn into the overlying waters. Although 65% Mn was in colloidal form (3 kDa-0.2 µm) in the main streamwater inflow at the western end, 57-66% was present in the <3 kDa fraction in the proximal loch waters, at least partly as a result of the release of Mn(2+) from the bottom sediments. Towards the outflow at the eastern end, however, the increase in the amount of Mn associated with large organic colloids (100 kDa-0.2 µm) correlated with the speciation of Mn in the bottom water and the bottom sediment porewaters. While the inflow waters do have some impact upon Mn speciation at the western end of the loch, it appears that within-loch processes have a greater impact on Mn speciation near the outflow. These findings emphasise the importance of understanding the geochemical controls on Mn behaviour in aquatic systems: it is clear that although Mn may be present as truly dissolved Mn(2+) in some parts of the loch, it can also be associated to a significant extent (35-47%) with large organic colloids. These findings are important not only with respect to water treatment but also in terms of understanding the likely consequences of climatic change which may exacerbate losses of Mn from the bottom sediments.


Subject(s)
Geologic Sediments/chemistry , Lakes/chemistry , Manganese/chemistry , Water Pollutants, Chemical/chemistry , Water Supply/analysis , Environmental Monitoring , Geologic Sediments/analysis , Lakes/analysis , Manganese/analysis , Rivers/chemistry , Scotland , Spectrophotometry, Atomic , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...