Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 183(4): 1453-1471, 2020 08.
Article in English | MEDLINE | ID: mdl-32457089

ABSTRACT

Site-directed nucleases (SDNs) used for targeted genome editing are powerful new tools to introduce precise genetic changes into plants. Like traditional approaches, such as conventional crossing and induced mutagenesis, genome editing aims to improve crop yield and nutrition. Next-generation sequencing studies demonstrate that across their genomes, populations of crop species typically carry millions of single nucleotide polymorphisms and many copy number and structural variants. Spontaneous mutations occur at rates of ∼10-8 to 10-9 per site per generation, while variation induced by chemical treatment or ionizing radiation results in higher mutation rates. In the context of SDNs, an off-target change or edit is an unintended, nonspecific mutation occurring at a site with sequence similarity to the targeted edit region. SDN-mediated off-target changes can contribute to a small number of additional genetic variants compared to those that occur naturally in breeding populations or are introduced by induced-mutagenesis methods. Recent studies show that using computational algorithms to design genome editing reagents can mitigate off-target edits in plants. Finally, crops are subject to strong selection to eliminate off-type plants through well-established multigenerational breeding, selection, and commercial variety development practices. Within this context, off-target edits in crops present no new safety concerns compared to other breeding practices. The current generation of genome editing technologies is already proving useful to develop new plant varieties with consumer and farmer benefits. Genome editing will likely undergo improved editing specificity along with new developments in SDN delivery and increasing genomic characterization, further improving reagent design and application.


Subject(s)
Genome, Plant/genetics , Crops, Agricultural/genetics , Gene Editing , Mutation Rate , Plants, Genetically Modified/genetics
2.
Plant Direct ; 4(3): e00209, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32166212

ABSTRACT

Site-specific recombinase enzymes function in heterologous cellular environments to initiate strand-switching reactions between unique DNA sequences termed recombinase binding sites. Depending on binding site position and orientation, reactions result in integrations, excisions, or inversions of targeted DNA sequences in a precise and predictable manner. Here, we established five different stable recombinase expression lines in maize through Agrobacterium-mediated transformation of T-DNA molecules that contain coding sequences for Cre, R, FLPe, phiC31 Integrase, and phiC31 excisionase. Through the bombardment of recombinase activated DsRed transient expression constructs, we have determined that all five recombinases are functional in maize plants. These recombinase expression lines could be utilized for a variety of genetic engineering applications, including selectable marker removal, targeted transgene integration into predetermined locations, and gene stacking.

3.
Curr Protoc Plant Biol ; 2(4): 350-369, 2017 Dec.
Article in English | MEDLINE | ID: mdl-33383981

ABSTRACT

Binary Bacterial Artificial Chromosomes (BiBAC) are large insert cloning vectors that contain the necessary features required for Agrobacterium-mediated transformation. However, the large size of BiBACs and low-copy number in Escherichia coli (DH10B) and Agrobacterium tumefaciens make cloning experiments more difficult than other available binary vector systems. Therefore, a protocol that outlines preparation, modification, and transformation of high-molecular weight (HMW) constructs is advantageous for researchers looking to use BiBACs in plant genomics research. This unit does not cover the cloning of HMW DNA into BiBAC vectors. Researchers looking to clone HMW DNA into BiBACs can refer to Zhang et al. (2012; doi: 10.1038/nprot.2011.456). © 2017 by John Wiley & Sons, Inc.

4.
Methods Mol Biol ; 1469: 1-13, 2016.
Article in English | MEDLINE | ID: mdl-27557682

ABSTRACT

Artificial minichromosomes are non-integrating vectors capable of stably maintaining transgenes outside of the main chromosome set. The production of minichromosomes relies on telomere-mediated chromosomal truncation, which involves introducing transgenes and telomere sequences concurrently to the cell to truncate an endogenous chromosomal target. Two methods can be utilized; either the telomere sequences can be incorporated into a binary vector for transformation with Agrobacterium tumefaciens, or the telomere sequences can be co-introduced with transgenes during particle bombardment. In this protocol, the methods required to isolate and introduce telomere sequences are presented. Following the methods presented, standard transformation procedures can be followed to produce minichromosome containing plants.


Subject(s)
Chromosomes, Artificial , Genetic Engineering/methods , Genetic Vectors/genetics , Telomere , Agrobacterium tumefaciens/genetics , Plants, Genetically Modified/genetics , Polymerase Chain Reaction/methods , Transgenes
5.
Curr Opin Biotechnol ; 37: 135-142, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26723011

ABSTRACT

Plant minichromosomes have the potential for stacking multiple traits on a separate entity from the remainder of the genome. Transgenes carried on an independent chromosome would facilitate conferring many new properties to plants and using minichromosomes as genetic tools. The favored method for producing plant minichromosomes is telomere-mediated chromosomal truncation because the epigenetic nature of centromere function prevents using centromere sequences to confer the ability to organize a kinetochore when reintroduced into plant cells. Because haploid induction procedures are not always complete in eliminating one parental genome, chromosomes from the inducer lines are often present in plants that are otherwise haploid. This fact suggests that minichromosomes could be combined with doubled haploid breeding to transfer stacked traits more easily to multiple lines and to use minichromosomes for massive scale genome editing.


Subject(s)
Chromosomes, Plant , Plants/genetics , Animals , Epigenomics , Genome, Plant , Haploidy , Humans , Plant Breeding , Telomere/genetics , Transgenes
6.
Curr Protoc Plant Biol ; 1(3): 501-509, 2016 Sep.
Article in English | MEDLINE | ID: mdl-31725957

ABSTRACT

High-quality preparations of chromosomes are useful for many purposes. To prepare metaphase chromosome spreads in maize, root tips are harvested and treated with nitrous oxide to stop cell division at metaphase before being fixed in acetic acid. This process allows a high number of condensed chromosome spreads to be obtained at the end of the procedure. To prepare chromosome spreads from various stages of meiosis, anthers are first fixed before being examined for developmental stage. Cells are digested with a mixture of enzymes before the chromosomes are dropped onto glass sides and fixed under UV light. © 2016 by John Wiley & Sons, Inc.

7.
Curr Protoc Plant Biol ; 1(3): 488-500, 2016 Sep.
Article in English | MEDLINE | ID: mdl-31725959

ABSTRACT

Minichromosomes have been generated in maize using telomere-mediated truncation. Telomere DNA, because of its repetitive nature, can be difficult to manipulate. The protocols in this unit describe two methods for generating the telomere DNA required for the initiation of telomere-mediated truncation. The resulting DNA can then be used with truncation cassettes for introduction into maize via transformation. © 2016 by John Wiley & Sons, Inc.

8.
Curr Protoc Plant Biol ; 1(3): 530-545, 2016 Sep.
Article in English | MEDLINE | ID: mdl-31725962

ABSTRACT

Fluorescence In Situ Hybridization (FISH) is the annealing of fluorescent DNA probes to their complementary sequences on prepared chromosomes and subsequent visualization with a fluorescent microscope. In maize, FISH is useful for distinguishing each of the ten chromosomes in different accessions (karyotyping), roughly mapping single genes, transposable elements, transgene insertions, and identifying various chromosomal alterations. FISH can also be used to distinguish chromosomes between different Zea species in interspecific hybrids by use of retroelement painting. © 2016 by John Wiley & Sons, Inc.

9.
Int Rev Cell Mol Biol ; 318: 63-119, 2015.
Article in English | MEDLINE | ID: mdl-26315884

ABSTRACT

Engineered minichromosomes are small chromosomes that contain a transgene and selectable marker, as well as all of the necessary components required for maintenance in an organism separately from the standard chromosome set. The separation from endogenous chromosomes makes engineered minichromosomes useful in the production of transgenic plants. Introducing transgenes to minichromosomes does not have the risk of insertion within a native gene; additionally, transgenes on minichromosomes can be transferred between lines without the movement of linked genes. Of the two methods proposed for creating engineered minichromosomes, telomere-mediated truncation is more reliable in plant systems. Additionally, many plants contain a supernumerary, or B chromosome, which is an excellent starting material for minichromosome creation. The use of site-specific recombination systems in minichromosomes can increase their utility, allowing for the addition or subtraction of transgenes in vivo. The creation of minichromosomes with binary bacterial artificial chromosome vectors provides the ability to introduce many transgenes at one time. Furthermore, coupling minichromosomes with haploid induction systems can facilitate transfer between lines. Minichromosomes can be introduced to a haploid-inducing line and crossed to target lines. Haploids of the target line that then contain a minichromosome can then be doubled. These homozygous lines will contain the transgene without the need for repeated introgressions.


Subject(s)
Chromosomes, Plant/genetics , Genetic Engineering/methods , Plants, Genetically Modified/genetics , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...