Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Brain Commun ; 6(3): fcae151, 2024.
Article in English | MEDLINE | ID: mdl-38903933

ABSTRACT

An accurate diagnosis of neurodegenerative disease and traumatic brain injury is important for prognostication and treatment. Neurofilament light and glial fibrillary acidic protein (GFAP) are leading biomarkers for neurodegeneration and glial activation that are detectable in blood. Yet, current recommendations require rapid centrifugation and ultra-low temperature storage post-venepuncture. Here, we investigated if these markers can be accurately measured in finger-prick blood using dried plasma spot cards. Fifty patients (46 with dementia; 4 with traumatic brain injury) and 19 healthy volunteers underwent finger-prick and venous sampling using dried plasma spot cards and aligned plasma sampling. Neurofilament light and GFAP were quantified using a Single molecule array assay and correlations between plasma and dried plasma spot cards assessed. Biomarker concentrations in plasma and finger-prick dried plasma spot samples were significantly positively correlated (neurofilament light ρ = 0.57; GFAP ρ = 0.58, P < 0.001). Finger-prick neurofilament light and GFAP were significantly elevated after acute traumatic brain injury with non-significant group-level increases in dementia (91% having Alzheimer's disease dementia). In conclusion, we present preliminary evidence that quantifying GFAP and neurofilament light using finger-prick blood collection is viable, with samples stored at room temperature using dried plasma spot cards. This has potential to expand and promote equitable testing access, including in settings where trained personnel are unavailable to perform venepuncture.

2.
BMJ Open ; 14(4): e082902, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38663922

ABSTRACT

INTRODUCTION: Although limited, recent research suggests that contact sport participation might have an adverse long-term effect on brain health. Further work is required to determine whether this includes an increased risk of neurodegenerative disease and/or subsequent changes in cognition and behaviour. The Advanced BiomaRker, Advanced Imaging and Neurocognitive Health Study will prospectively examine the neurological, psychiatric, psychological and general health of retired elite-level rugby union and association football/soccer players. METHODS AND ANALYSIS: 400 retired athletes will be recruited (200 rugby union and 200 association football players, male and female). Athletes will undergo a detailed clinical assessment, advanced neuroimaging, blood testing for a range of brain health outcomes and neuropsychological assessment longitudinally. Follow-up assessments will be completed at 2 and 4 years after baseline visit. 60 healthy volunteers will be recruited and undergo an aligned assessment protocol including advanced neuroimaging, blood testing and neuropsychological assessment. We will describe the previous exposure to head injuries across the cohort and investigate relationships between biomarkers of brain injury and clinical outcomes including cognitive performance, clinical diagnoses and psychiatric symptom burden. ETHICS AND DISSEMINATION: Relevant ethical approvals have been granted by the Camberwell St Giles Research Ethics Committee (Ref: 17/LO/2066). The study findings will be disseminated through manuscripts in clinical/academic journals, presentations at professional conferences and through participant and stakeholder communications.


Subject(s)
Athletes , Biomarkers , Football , Neuroimaging , Neuropsychological Tests , Humans , Prospective Studies , Biomarkers/blood , Male , Football/injuries , Neuroimaging/methods , Female , Athletes/psychology , Retirement , Cognition , Research Design , Brain/diagnostic imaging , Soccer/injuries
3.
J Infect ; 88(6): 106167, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679203

ABSTRACT

OBJECTIVES: Urinary tract infections (UTIs) frequently cause hospitalisation and death in people living with dementia (PLWD). We examine UTI incidence and associated mortality among PLWD relative to matched controls and people with diabetes and investigate whether delayed or withheld treatment further impacts mortality. METHODS: Data were extracted for n = 2,449,814 people aged ≥ 50 in Wales from 2000-2021, with groups matched by age, sex, and multimorbidity. Poisson regression was used to estimate incidences of UTI and mortality. Cox regression was used to study the effects of treatment timing. RESULTS: UTIs in dementia (HR=2.18, 95 %CI [1.88-2.53], p < .0) and diabetes (1.21[1.01-1.45], p = .035) were associated with high mortality, with the highest risk in individuals with diabetes and dementia (both) (2.83[2.40-3.34], p < .0) compared to matched individuals with neither dementia nor diabetes. 5.4 % of untreated PLWD died within 60 days of GP diagnosis-increasing to 5.9 % in PLWD with diabetes. CONCLUSIONS: Incidences of UTI and associated mortality are high in PLWD, especially in those with diabetes and dementia. Delayed treatment for UTI is further associated with high mortality.


Subject(s)
Dementia , Urinary Tract Infections , Humans , Dementia/epidemiology , Dementia/complications , Dementia/mortality , Urinary Tract Infections/epidemiology , Urinary Tract Infections/mortality , Urinary Tract Infections/complications , Male , Female , Aged , Incidence , Middle Aged , Aged, 80 and over , Wales/epidemiology , Risk Factors , Diabetes Mellitus/epidemiology
4.
Brain Commun ; 5(6): fcad257, 2023.
Article in English | MEDLINE | ID: mdl-38025272

ABSTRACT

There is growing concern that elite rugby participation may negatively influence brain health, but the underlying mechanisms are unclear. Cortical thickness is a widely applied biomarker of grey matter structure, but there is limited research into how it may be altered in active professional rugby players. Cross-sectional MRI data from 44 active elite rugby players, including 21 assessed within 1 week of head injury, and 47 healthy controls were analysed. We investigated how active elite rugby participation with and without sub-acute traumatic brain injury influenced grey matter structure using whole cortex and region of interest cortical thickness analyses. Relationships between cortical thickness and biomarkers of traumatic brain injury, including fractional anisotropy, plasma neurofilament light and glial fibrillary acidic protein, were also examined. In whole-cortex analyses, precentral cortical thickness in the right hemisphere was lower in rugby players compared with controls, which was due to reductions in non-injured players. Post hoc region of interest analyses showed non-injured rugby players had reduced cortical thickness in the inferior precentral sulcal thickness bilaterally (P = 0.005) and the left central sulcus (P = 0.037) relative to controls. In contrast, players in the sub-acute phase of mild traumatic brain injury had higher inferior precentral sulcal cortical thickness in the right hemisphere (P = 0.015). Plasma glial fibrillary acidic protein, a marker of astrocyte activation, was positively associated with right inferior precentral sulcal cortical thickness in injured rugby players (P = 0.0012). Elite rugby participation is associated with localized alterations in cortical thickness, specifically in sulcal motor regions. Sub-acute changes after mild traumatic brain injury are associated with evidence of astrocytic activation. The combination of cortical thickness and glial fibrillary acidic protein may be useful in understanding the pathophysiological relationship between sporting head injury and brain health.

6.
EClinicalMedicine ; 59: 101980, 2023 May.
Article in English | MEDLINE | ID: mdl-37152359

ABSTRACT

Background: Online technology could potentially revolutionise how patients are cognitively assessed and monitored. However, it remains unclear whether assessments conducted remotely can match established pen-and-paper neuropsychological tests in terms of sensitivity and specificity. Methods: This observational study aimed to optimise an online cognitive assessment for use in traumatic brain injury (TBI) clinics. The tertiary referral clinic in which this tool has been clinically implemented typically sees patients a minimum of 6 months post-injury in the chronic phase. Between March and August 2019, we conducted a cross-group, cross-device and factor analyses at the St. Mary's Hospital TBI clinic and major trauma wards at Imperial College NHS trust and St. George's Hospital in London (UK), to identify a battery of tasks that assess aspects of cognition affected by TBI. Between September 2019 and February 2020, we evaluated the online battery against standard face-to-face neuropsychological tests at the Imperial College London research centre. Canonical Correlation Analysis (CCA) determined the shared variance between the online battery and standard neuropsychological tests. Finally, between October 2020 and December 2021, the tests were integrated into a framework that automatically generates a results report where patients' performance is compared to a large normative dataset. We piloted this as a practical tool to be used under supervised and unsupervised conditions at the St. Mary's Hospital TBI clinic in London (UK). Findings: The online assessment discriminated processing-speed, visual-attention, working-memory, and executive-function deficits in TBI. CCA identified two significant modes indicating shared variance with standard neuropsychological tests (r = 0.86, p < 0.001 and r = 0.81, p = 0.02). Sensitivity to cognitive deficits after TBI was evident in the TBI clinic setting under supervised and unsupervised conditions (F (15,555) = 3.99; p < 0.001). Interpretation: Online cognitive assessment of TBI patients is feasible, sensitive, and efficient. When combined with normative sociodemographic models and autogenerated reports, it has the potential to transform cognitive assessment in the healthcare setting. Funding: This work was funded by a National Institute for Health Research (NIHR) Invention for Innovation (i4i) grant awarded to DJS and AH (II-LB-0715-20006).

7.
BMJ Open ; 13(5): e069594, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37221026

ABSTRACT

INTRODUCTION: A significant environmental risk factor for neurodegenerative disease is traumatic brain injury (TBI). However, it is not clear how TBI results in ongoing chronic neurodegeneration. Animal studies show that systemic inflammation is signalled to the brain. This can result in sustained and aggressive microglial activation, which in turn is associated with widespread neurodegeneration. We aim to evaluate systemic inflammation as a mediator of ongoing neurodegeneration after TBI. METHODS AND ANALYSIS: TBI-braINFLAMM will combine data already collected from two large prospective TBI studies. The CREACTIVE study, a broad consortium which enrolled >8000 patients with TBI to have CT scans and blood samples in the hyperacute period, has data available from 854 patients. The BIO-AX-TBI study recruited 311 patients to have acute CT scans, longitudinal blood samples and longitudinal MRI brain scans. The BIO-AX-TBI study also has data from 102 healthy and 24 non-TBI trauma controls, comprising blood samples (both control groups) and MRI scans (healthy controls only). All blood samples from BIO-AX-TBI and CREACTIVE have already been tested for neuronal injury markers (GFAP, tau and NfL), and CREACTIVE blood samples have been tested for inflammatory cytokines. We will additionally test inflammatory cytokine levels from the already collected longitudinal blood samples in the BIO-AX-TBI study, as well as matched microdialysate and blood samples taken during the acute period from a subgroup of patients with TBI (n=18).We will use this unique dataset to characterise post-TBI systemic inflammation, and its relationships with injury severity and ongoing neurodegeneration. ETHICS AND DISSEMINATION: Ethical approval for this study has been granted by the London-Camberwell St Giles Research Ethics Committee (17/LO/2066). Results will be submitted for publication in peer-review journals, presented at conferences and inform the design of larger observational and experimental medicine studies assessing the role and management of post-TBI systemic inflammation.


Subject(s)
Brain Injuries, Traumatic , Neurodegenerative Diseases , Animals , Prospective Studies , Brain , Cytokines , Inflammation
8.
BMJ Open ; 13(3): e069243, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36944467

ABSTRACT

INTRODUCTION: Outcomes of traumatic brain injury (TBI) are highly variable, with cognitive and psychiatric problems often present in survivors, including an increased dementia risk in the long term. Military personnel are at an increased occupational risk of TBI, with high rates of complex polytrauma including TBI characterising the UK campaign in Afghanistan. The ArmeD SerVices TrAuma and RehabilitatioN OutComE (ADVANCE)-TBI substudy will describe the patterns, associations and long-term outcomes of TBI in the established ADVANCE cohort. METHODS AND ANALYSIS: The ADVANCE cohort comprises 579 military personnel exposed to major battlefield trauma requiring medical evacuation, and 566 matched military personnel without major trauma. TBI exposure has been captured at baseline using a standardised interview and registry data, and will be refined at first follow-up visit with the Ohio State Method TBI interview (a National Institute of Neurological Disorders and Stroke TBI common data element). Participants will undergo blood sampling, MRI and detailed neuropsychological assessment longitudinally as part of their follow-up visits every 3-5 years over a 20-year period. Biomarkers of injury, neuroinflammation and degeneration will be quantified in blood, and polygenic risk scores calculated for neurodegeneration. Age-matched healthy volunteers will be recruited as controls for MRI analyses. We will describe TBI exposure across the cohort, and consider any relationship with advanced biomarkers of injury and clinical outcomes including cognitive performance, neuropsychiatric symptom burden and function. The influence of genotype will be assessed. This research will explore the relationship between military head injury exposure and long-term outcomes, providing insights into underlying disease mechanisms and informing prevention interventions. ETHICS AND DISSEMINATION: The ADVANCE-TBI substudy has received a favourable opinion from the Ministry of Defence Research Ethics Committee (ref: 2126/MODREC/22). Findings will be disseminated via publications in peer-reviewed journals and presentations at conferences.


Subject(s)
Brain Injuries, Traumatic , Military Personnel , Humans , Military Personnel/psychology , Longitudinal Studies , Afghanistan , Brain Injuries, Traumatic/epidemiology , Cohort Studies , United Kingdom/epidemiology
9.
Alzheimers Dement ; 19(7): 3065-3077, 2023 07.
Article in English | MEDLINE | ID: mdl-36696255

ABSTRACT

INTRODUCTION: Traumatic brain injury (TBI) is a dementia risk factor, with Alzheimer's disease (AD) more common following injury. Patterns of neurodegeneration produced by TBI can be compared to AD and aging using volumetric MRI. METHODS: A total of 55 patients after moderate to severe TBI (median age 40), 45 with AD (median age 69), and 61 healthy volunteers underwent magnetic resonance imaging over 2 years. Atrophy patterns were compared. RESULTS: AD patients had markedly lower baseline volumes. TBI was associated with increased white matter (WM) atrophy, particularly involving corticospinal tracts and callosum, whereas AD rates were increased across white and gray matter (GM). Subcortical WM loss was shared in AD/TBI, but deep WM atrophy was TBI-specific and cortical atrophy AD-specific. Post-TBI atrophy patterns were distinct from aging, which resembled AD. DISCUSSION: Post-traumatic neurodegeneration 1.9-4.0 years (median) following moderate-severe TBI is distinct from aging/AD, predominantly involving central WM. This likely reflects distributions of axonal injury, a neurodegeneration trigger. HIGHLIGHTS: We compared patterns of brain atrophy longitudinally after moderate to severe TBI in late-onset AD and healthy aging. Patients after TBI had abnormal brain atrophy involving the corpus callosum and other WM tracts, including corticospinal tracts, in a pattern that was specific and distinct from AD and aging. This pattern is reminiscent of axonal injury following TBI, and atrophy rates were predicted by the extent of axonal injury on diffusion tensor imaging, supporting a relationship between early axonal damage and chronic neurodegeneration.


Subject(s)
Alzheimer Disease , Brain Injuries, Traumatic , White Matter , Humans , Adult , Aged , Diffusion Tensor Imaging , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Magnetic Resonance Imaging , Atrophy/pathology , Brain/diagnostic imaging , Brain/pathology , White Matter/diagnostic imaging , White Matter/pathology
11.
Ann Bot ; 129(1): 65-78, 2022 01 08.
Article in English | MEDLINE | ID: mdl-34605859

ABSTRACT

BACKGROUND AND AIMS: Some Caryophyllales species accumulate abnormally large shoot sodium (Na) concentrations in non-saline environments. It is not known whether this is a consequence of altered Na partitioning between roots and shoots. This paper tests the hypotheses (1) that Na concentrations in shoots ([Na]shoot) and in roots ([Na]root) are positively correlated among Caryophyllales, and (2) that shoot Na hyperaccumulation is correlated with [Na]shoot/[Na]root quotients. METHODS: Fifty two genotypes, representing 45 Caryophyllales species and 4 species from other angiosperm orders, were grown hydroponically in a non-saline, complete nutrient solution. Concentrations of Na in shoots and in roots were determined using inductively coupled plasma mass spectrometry (ICP-MS). KEY RESULTS: Sodium concentrations in shoots and roots were not correlated among Caryophyllales species with normal [Na]shoot, but were positively correlated among Caryophyllales species with abnormally large [Na]shoot. In addition, Caryophyllales species with abnormally large [Na]shoot had greater [Na]shoot/[Na]root than Caryophyllales species with normal [Na]shoot. CONCLUSIONS: Sodium hyperaccumulators in the Caryophyllales are characterized by abnormally large [Na]shoot, a positive correlation between [Na]shoot and [Na]root, and [Na]shoot/[Na]root quotients greater than unity.


Subject(s)
Caryophyllales , Magnoliopsida , Magnoliopsida/genetics , Plant Roots/chemistry , Plant Shoots/genetics , Sodium
12.
Sci Transl Med ; 13(613): eabg9922, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34586833

ABSTRACT

Axonal injury is a key determinant of long-term outcomes after traumatic brain injury (TBI) but has been difficult to measure clinically. Fluid biomarker assays can now sensitively quantify neuronal proteins in blood. Axonal components such as neurofilament light (NfL) potentially provide a diagnostic measure of injury. In the multicenter BIO-AX-TBI study of moderate-severe TBI, we investigated relationships between fluid biomarkers, advanced neuroimaging, and clinical outcomes. Cerebral microdialysis was used to assess biomarker concentrations in brain extracellular fluid aligned with plasma measurement. An experimental injury model was used to validate biomarkers against histopathology. Plasma NfL increased after TBI, peaking at 10 days to 6 weeks but remaining abnormal at 1 year. Concentrations were around 10 times higher early after TBI than in controls (patients with extracranial injuries). NfL concentrations correlated with diffusion MRI measures of axonal injury and predicted white matter neurodegeneration. Plasma TAU predicted early gray matter atrophy. NfL was the strongest predictor of functional outcomes at 1 year. Cerebral microdialysis showed that NfL concentrations in plasma and brain extracellular fluid were highly correlated. An experimental injury model confirmed a dose-response relationship of histopathologically defined axonal injury to plasma NfL. In conclusion, plasma NfL provides a sensitive and clinically meaningful measure of axonal injury produced by TBI. This reflects the extent of underlying damage, validated using advanced MRI, cerebral microdialysis, and an experimental model. The results support the incorporation of NfL sampling subacutely after injury into clinical practice to assist with the diagnosis of axonal injury and to improve prognostication.


Subject(s)
Brain Injuries, Traumatic , Intermediate Filaments , Axons , Biomarkers , Brain , Brain Injuries, Traumatic/complications , Humans
13.
Brain Commun ; 3(3): fcab133, 2021.
Article in English | MEDLINE | ID: mdl-34435188

ABSTRACT

The recognition, diagnosis and management of mild traumatic brain injuries are difficult and confusing. It is unclear how the severity and number of injuries sustained relate to brain injuries, such as diffuse axonal injury, diffuse vascular injury and progressive neurodegeneration. Advances in neuroimaging techniques enable the investigation of neuropathologies associated with acute and long-term effects of injury. Head injuries are the most commonly reported injury seen during professional rugby. There is increased vigilance for the immediate effects of these injuries in matches, but there has been surprisingly little research investigating the longer-term effects of rugby participation. Here, we present a longitudinal observational study investigating the relationship of exposure to rugby participation and sub-acute head injuries in professional adult male and female rugby union and league players using advanced MRI. Diffusion tensor imaging and susceptibility weighted imaging was used to assess white matter structure and evidence of axonal and diffuse vascular injury. We also studied changes in brain structure over time using Jacobian Determinant statistics extracted from serial volumetric imaging. We tested 41 male and 3 female adult elite rugby players, of whom 21 attended study visits after a head injury, alongside 32 non-sporting controls, 15 non-collision-sport athletic controls and 16 longitudinally assessed controls. Eighteen rugby players participated in the longitudinal arm of the study, with a second visit at least 6 months after their first scan. Neuroimaging evidence of either axonal injury or diffuse vascular injury was present in 23% (10/44) of players. In the non-acutely injured group of rugby players, abnormalities of fractional anisotropy and other diffusion measures were seen. In contrast, non-collision-sport athletic controls were not classified as showing abnormalities. A group level contrast also showed evidence of sub-acute injury using diffusion tensor imaging in rugby players. Examination of longitudinal imaging revealed unexpected reductions in white matter volume in the elite rugby players studied. These changes were not related to self-reported head injury history or neuropsychological test scores and might indicate excess neurodegeneration in white matter tracts affected by injury. Taken together, our findings suggest an association of participation in elite adult rugby with changes in brain structure. Further well-designed large-scale studies are needed to understand the impact of both repeated sports-related head impacts and head injuries on brain structure, and to clarify whether the abnormalities we have observed are related to an increased risk of neurodegenerative disease and impaired neurocognitive function following elite rugby participation.

14.
Plant Physiol ; 186(3): 1616-1631, 2021 07 06.
Article in English | MEDLINE | ID: mdl-33831190

ABSTRACT

Magnesium (Mg) and calcium (Ca) are essential mineral nutrients poorly supplied in many human food systems. In grazing livestock, Mg and Ca deficiencies are costly welfare issues. Here, we report a Brassica rapa loss-of-function schengen3 (sgn3) mutant, braA.sgn3.a-1, which accumulates twice as much Mg and a third more Ca in its leaves. We mapped braA.sgn3.a to a single recessive locus using a forward ionomic screen of chemically mutagenized lines with subsequent backcrossing and linked-read sequencing of second back-crossed, second filial generation (BC2F2) segregants. Confocal imaging revealed a disrupted root endodermal diffusion barrier, consistent with SGN3 encoding a receptor-like kinase required for normal formation of Casparian strips, as reported in thale cress (Arabidopsis thaliana). Analysis of the spatial distribution of elements showed elevated extracellular Mg concentrations in leaves of braA.sgn3.a-1, hypothesized to result from preferential export of excessive Mg from cells to ensure suitable cellular concentrations. This work confirms a conserved role of SGN3 in controlling nutrient homeostasis in B. rapa, and reveals mechanisms by which plants are able to deal with perturbed shoot element concentrations resulting from a "leaky" root endodermal barrier. Characterization of variation in leaf Mg and Ca accumulation across a mutagenized population of B. rapa shows promise for using such populations in breeding programs to increase edible concentrations of essential human and animal nutrients.


Subject(s)
Brassica rapa/genetics , Brassica rapa/metabolism , Calcium/analysis , Calcium/metabolism , Genes, Recessive , Magnesium/analysis , Magnesium/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Mutation , Plant Leaves/genetics , Plant Leaves/metabolism
15.
Brain ; 144(1): 92-113, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33257929

ABSTRACT

Poor outcomes after traumatic brain injury (TBI) are common yet remain difficult to predict. Diffuse axonal injury is important for outcomes, but its assessment remains limited in the clinical setting. Currently, axonal injury is diagnosed based on clinical presentation, visible damage to the white matter or via surrogate markers of axonal injury such as microbleeds. These do not accurately quantify axonal injury leading to misdiagnosis in a proportion of patients. Diffusion tensor imaging provides a quantitative measure of axonal injury in vivo, with fractional anisotropy often used as a proxy for white matter damage. Diffusion imaging has been widely used in TBI but is not routinely applied clinically. This is in part because robust analysis methods to diagnose axonal injury at the individual level have not yet been developed. Here, we present a pipeline for diffusion imaging analysis designed to accurately assess the presence of axonal injury in large white matter tracts in individuals. Average fractional anisotropy is calculated from tracts selected on the basis of high test-retest reliability, good anatomical coverage and their association to cognitive and clinical impairments after TBI. We test our pipeline for common methodological issues such as the impact of varying control sample sizes, focal lesions and age-related changes to demonstrate high specificity, sensitivity and test-retest reliability. We assess 92 patients with moderate-severe TBI in the chronic phase (≥6 months post-injury), 25 patients in the subacute phase (10 days to 6 weeks post-injury) with 6-month follow-up and a large control cohort (n = 103). Evidence of axonal injury is identified in 52% of chronic and 28% of subacute patients. Those classified with axonal injury had significantly poorer cognitive and functional outcomes than those without, a difference not seen for focal lesions or microbleeds. Almost a third of patients with unremarkable standard MRIs had evidence of axonal injury, whilst 40% of patients with visible microbleeds had no diffusion evidence of axonal injury. More diffusion abnormality was seen with greater time since injury, across individuals at various chronic injury times and within individuals between subacute and 6-month scans. We provide evidence that this pipeline can be used to diagnose axonal injury in individual patients at subacute and chronic time points, and that diffusion MRI provides a sensitive and complementary measure when compared to susceptibility weighted imaging, which measures diffuse vascular injury. Guidelines for the implementation of this pipeline in a clinical setting are discussed.


Subject(s)
Axons/pathology , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/pathology , Diffusion Magnetic Resonance Imaging , White Matter/diagnostic imaging , White Matter/pathology , Adult , Anisotropy , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Reproducibility of Results
16.
Plant Soil ; 457(1): 25-41, 2020.
Article in English | MEDLINE | ID: mdl-33268909

ABSTRACT

AIM: Magnesium (Mg) deficiency (known as grass tetany) is a serious metabolic disorder that affects grazing ruminants. We tested whether Mg-fertiliser can increase Mg concentration of Italian ryegrasses (Lolium multiflorum L.) including a cultivar (cv. Bb2067; 'Magnet'), bred to accumulate larger concentrations of Mg. METHODS: Under controlled environment (CE) conditions, three cultivars (cv. Bb2067, cv. Bb2068, cv. RvP) were grown in low-nutrient compost at six fertiliser rates (0-1500 µM MgCl2.6H2O). Under field conditions, the three cultivars in the CE condition and cv. Alamo were grown at two sites, and four rates of MgSO4 fertiliser application rates (0-200 kg ha-1 MgO). Multiple grass cuts were taken over two-years. RESULTS: Grass Mg concentration increased with increasing Mg-fertiliser application rates in all cultivars and conditions. Under field conditions, cv. Bb2067 had 11-73% greater grass Mg concentration and smaller forage tetany index (FTI) than other cultivars across the Mg-fertiliser application rates, sites and cuts. Grass dry matter (DM) yield of cv. Bb2067 was significantly (p < 0.05) smaller than cv. Alamo. The effect of Mg-fertiliser rate on DM yield was not significant (p ≥ 0.05). CONCLUSIONS: Biofortification of grass with Mg through breeding and agronomy can improve the forage Mg concentration for grazing ruminants, even in high-growth spring grass conditions when hypomagnesaemia is most prevalent. Response to agronomic biofortification varied with cultivar, Mg-fertiliser rate, site and weather. The cost:benefit of these approaches and farmer acceptability, and the impact on cattle and sheep grazing on grasses biofortified with Mg requires further investigation.

17.
Brain ; 143(12): 3685-3698, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33099608

ABSTRACT

Traumatic brain injury is associated with elevated rates of neurodegenerative diseases such as Alzheimer's disease and chronic traumatic encephalopathy. In experimental models, diffuse axonal injury triggers post-traumatic neurodegeneration, with axonal damage leading to Wallerian degeneration and toxic proteinopathies of amyloid and hyperphosphorylated tau. However, in humans the link between diffuse axonal injury and subsequent neurodegeneration has yet to be established. Here we test the hypothesis that the severity and location of diffuse axonal injury predicts the degree of progressive post-traumatic neurodegeneration. We investigated longitudinal changes in 55 patients in the chronic phase after moderate-severe traumatic brain injury and 19 healthy control subjects. Fractional anisotropy was calculated from diffusion tensor imaging as a measure of diffuse axonal injury. Jacobian determinant atrophy rates were calculated from serial volumetric T1 scans as a measure of measure post-traumatic neurodegeneration. We explored a range of potential predictors of longitudinal post-traumatic neurodegeneration and compared the variance in brain atrophy that they explained. Patients showed widespread evidence of diffuse axonal injury, with reductions of fractional anisotropy at baseline and follow-up in large parts of the white matter. No significant changes in fractional anisotropy over time were observed. In contrast, abnormally high rates of brain atrophy were seen in both the grey and white matter. The location and extent of diffuse axonal injury predicted the degree of brain atrophy: fractional anisotropy predicted progressive atrophy in both whole-brain and voxelwise analyses. The strongest relationships were seen in central white matter tracts, including the body of the corpus callosum, which are most commonly affected by diffuse axonal injury. Diffuse axonal injury predicted substantially more variability in white matter atrophy than other putative clinical or imaging measures, including baseline brain volume, age, clinical measures of injury severity and microbleeds (>50% for fractional anisotropy versus <5% for other measures). Grey matter atrophy was not predicted by diffuse axonal injury at baseline. In summary, diffusion MRI measures of diffuse axonal injury are a strong predictor of post-traumatic neurodegeneration. This supports a causal link between axonal injury and the progressive neurodegeneration that is commonly seen after moderate/severe traumatic brain injury but has been of uncertain aetiology. The assessment of diffuse axonal injury with diffusion MRI is likely to improve prognostic accuracy and help identify those at greatest neurodegenerative risk for inclusion in clinical treatment trials.


Subject(s)
Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/pathology , Diffuse Axonal Injury/pathology , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/pathology , Adult , Anisotropy , Atrophy , Brain Injuries, Traumatic/diagnostic imaging , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Diffuse Axonal Injury/diagnostic imaging , Diffusion Tensor Imaging , Female , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Longitudinal Studies , Male , Middle Aged , Neurodegenerative Diseases/diagnostic imaging , Neuropsychological Tests , Predictive Value of Tests , Psychomotor Performance , White Matter/diagnostic imaging , White Matter/pathology , Young Adult
18.
Plant Mol Biol ; 101(1-2): 65-79, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31190320

ABSTRACT

KEY MESSAGE: Overexpression of BoMYB29 gene up-regulates the aliphatic glucosinolate pathway in Brassica oleracea plants increasing the production of the anti-cancer metabolite glucoraphanin, and the toxic and pungent sinigrin. Isothiocyanates, the bio-active hydrolysis products of glucosinolates, naturally produced by several Brassicaceae species, play an important role in human health and agriculture. This study aims at correlating the content of aliphatic glucosinolates to the expression of genes involved in their synthesis in Brassica oleracea, and perform functional analysis of BoMYB29 gene. To this purpose, three genotypes were used: a sprouting broccoli, a cabbage, and a wild genotype (Winspit), a high glucosinolate containing accession. Winspit showed the highest transcript level of BoMYB28, BoMYB29 and BoAOP2 genes, and BoAOP2 expression was positively correlated with that of the two MYB genes. Further analyses of the aliphatic glucosinolates also showed a positive correlation between the expression of BoAOP2 and the production of sinigrin and gluconapin in Winspit. The Winspit BoMYB29 CDS was cloned and overexpressed in Winspit and in the DH AG1012 line. Overexpressing Winspit plants produced higher quantities of alkenyl glucosinolates, such as sinigrin. Conversely, the DH AG1012 transformants showed a higher production of methylsulphinylalkyl glucosinolates, including glucoraphanin, and, despite an up-regulation of the aliphatic glucosinolate genes, no increase in alkenyl glucosinolates. The latter may be explained by the absence of a functional AOP2 gene in DH AG1012. Nevertheless, an extract of DH AG1012 lines overexpressing BoMYB29 provided a chemoprotective effect on human colon cells. This work exemplifies how the genetic diversity of B. oleracea may be used by breeders to select for higher expression of transcription factors for glucosinolate biosynthesis to improve its natural, health-promoting properties.


Subject(s)
Brassica/genetics , Glucosinolates/metabolism , Plant Extracts/pharmacology , Transcription Factors/metabolism , Brassica/chemistry , Brassica/metabolism , Gene Expression , Genetic Variation , HT29 Cells , Humans , Imidoesters/metabolism , Isothiocyanates/metabolism , Oximes , Plant Extracts/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Sulfoxides , Transcription Factors/genetics
19.
Sci Rep ; 9(1): 1983, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30760853

ABSTRACT

The growing population requires sustainable, environmentally-friendly crops. The plant growth-enhancing properties of algal extracts have suggested their use as biofertilisers. The mechanism(s) by which algal extracts affect plant growth are unknown. We examined the effects of extracts from the common green seaweed Ulva intestinalis on germination and root development in the model land plant Arabidopsis thaliana. Ulva extract concentrations above 0.1% inhibited Arabidopsis germination and root growth. Ulva extract <0.1% stimulated root growth. All concentrations of Ulva extract inhibited lateral root formation. An abscisic-acid-insensitive mutant, abi1, showed altered sensitivity to germination- and root growth-inhibition. Ethylene- and cytokinin-insensitive mutants were partly insensitive to germination-inhibition. This suggests that different mechanisms mediate each effect of Ulva extract on early Arabidopsis development and that multiple hormones contribute to germination-inhibition. Elemental analysis showed that Ulva contains high levels of Aluminium ions (Al3+). Ethylene and cytokinin have been suggested to function in Al3+-mediated root growth inhibition: our data suggest that if Ulva Al3+ levels inhibit root growth, this is via a novel mechanism. We suggest algal extracts should be used cautiously as fertilisers, as the inhibitory effects on early development may outweigh any benefits if the concentration of extract is too high.


Subject(s)
Arabidopsis/embryology , Arabidopsis/growth & development , Fertilizers/analysis , Plant Extracts/pharmacology , Seaweed/chemistry , Ulva/chemistry , Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cytokinins/metabolism , Ethylenes/metabolism , Germination/drug effects , Phosphoprotein Phosphatases/genetics , Plant Growth Regulators/pharmacology , Plant Roots/growth & development , Seedlings/growth & development
20.
Front Plant Sci ; 9: 1487, 2018.
Article in English | MEDLINE | ID: mdl-30386356

ABSTRACT

Large nitrogen, phosphorus and potassium fertilizer inputs are used in many crop systems. Identifying genetic loci controlling nutrient accumulation may be useful in crop breeding strategies to increase fertilizer use efficiency and reduce financial and environmental costs. Here, variation in leaf nitrate concentration across a diversity population of 383 genotypes of Brassica napus was characterized. Genetic loci controlling variation in leaf nitrate, phosphorus and potassium concentration were then identified through Associative Transcriptomics using single nucleotide polymorphism (SNP) markers and gene expression markers (GEMs). Leaf nitrate concentration varied over 8-fold across the diversity population. A total of 455 SNP markers were associated with leaf nitrate concentration after false-discovery-rate (FDR) correction. In linkage disequilibrium of highly associated markers are a number of known nitrate transporters and sensors, including a gene thought to mediate expression of the major nitrate transporter NRT1.1. Several genes influencing root and root-hair development co-localize with chromosomal regions associated with leaf P concentration. Orthologs of three ABC-transporters involved in suberin synthesis in roots also co-localize with association peaks for both leaf nitrate and phosphorus. Allelic variation at nearby, highly associated SNPs confers large variation in leaf nitrate and phosphorus concentration. A total of five GEMs associated with leaf K concentration after FDR correction including a GEM that corresponds to an auxin-response family protein. Candidate loci, genes and favorable alleles identified here may prove useful in marker-assisted selection strategies to improve fertilizer use efficiency in B. napus.

SELECTION OF CITATIONS
SEARCH DETAIL
...