Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 689: 921-936, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31280173

ABSTRACT

In New Zealand, dairy farming faces increasing scrutiny for its environmental impacts, including those on soil carbon (C) stocks; hence, alternative management practices are required. One such practice is usage of deep-rooting forage, such as lucerne (Medicago sativa L.). We measured the C and water exchange of two neighbouring lucerne fields on stony, well-drained soil for 3 years, following conversion from grassland. One field received irrigation and effluent; the other received neither. Net CO2 exchange and evaporation were measured by eddy covariance, drainage and leaching with lysimeters, and water inputs with rain gauges. Biomass removal from harvesting and grazing was recorded by direct sampling. In the conversion year, irrigated lucerne was C-neutral despite two harvests and losses from the conversion process. In the 2nd and 3rd years combined, the biomass-C removal exceeded net CO2 uptake, causing net losses of 450 g C m-2 and 210 g C m-2 for irrigated and non-irrigated lucerne, respectively. Leaching losses accounted for 1 to 9 % of annual net C uptake from the atmosphere. The ratio of ecosystem respiration to gross photosynthetic productivity (GPP) increased from <0.7 in spring to ≈ 1 in autumn. Consequently, the net C balance for both lucerne crops showed gains in the first two growth periods of each year and losses in the subsequent two to four growth periods. Irrigation made no difference to the photosynthetic water-use efficiency at field scale (GPP/evaporation), but enhanced production water-use efficiency (biomass/water input). Irrigation increased both the absolute amount of drainage and the fraction of water inputs lost by drainage. In one year, significant summer drainage occurred for the irrigated lucerne. To prevent that, soil-water content should be kept well below field capacity but above the crop's water-stress level. Such practice would likely also help retain soil carbon.


Subject(s)
Agricultural Irrigation , Carbon Cycle , Crop Production/methods , Fertilizers/analysis , Soil/chemistry , Water/analysis , Ecosystem , Medicago sativa/growth & development , New Zealand
2.
PLoS One ; 9(3): e91204, 2014.
Article in English | MEDLINE | ID: mdl-24621790

ABSTRACT

Soil respiration (RS) represents a large terrestrial source of CO2 to the atmosphere. Global change drivers such as climate warming and nitrogen deposition are expected to alter the terrestrial carbon cycle with likely consequences for RS and its components, autotrophic (RA) and heterotrophic respiration (RH). Here we investigate the impacts of a 3°C soil warming treatment and a 50 kg ha(-1) y(-1) nitrogen addition treatment on RS, RH and their respective seasonal temperature responses in an experimental tussock grassland. Average respiration in untreated soils was 0.96±0.09 µmol m(-2) s(-1) over the course of the experiment. Soil warming and nitrogen addition increased RS by 41% and 12% respectively. These treatment effects were additive under combined warming and nitrogen addition. Warming increased RH by 37% while nitrogen addition had no effect. Warming and nitrogen addition affected the seasonal temperature response of RS by increasing the basal rate of respiration (R10) by 14% and 20% respectively. There was no significant interaction between treatments for R10. The treatments had no impact on activation energy (E0). The seasonal temperature response of RH was not affected by either warming or nitrogen addition. These results suggest that the additional CO2 emissions from New Zealand tussock grassland soils as a result of warming-enhanced RS constitute a potential positive feedback to rising atmospheric CO2 concentration.


Subject(s)
Carbon Dioxide/chemistry , Grassland , Nitrogen/chemistry , Soil/chemistry , Temperature , Atmosphere , Biomass , Carbon Dioxide/analysis , Models, Theoretical , New Zealand , Seasons , Soil Microbiology , Water/analysis
3.
Ann Bot ; 110(2): 253-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22492330

ABSTRACT

AIMS AND BACKGROUND: While the temperature response of soil respiration (R(S)) has been well studied, the partitioning of heterotrophic respiration (R(H)) by soil microbes from autotrophic respiration (R(A)) by roots, known to have distinct temperature sensitivities, has been problematic. Further complexity stems from the presence of roots affecting R(H), the rhizosphere priming effect. In this study the short-term temperature responses of R(A) and R(H) in relation to rhizosphere priming are investigated. METHODS: Temperature responses of R(A), R(H) and rhizosphere priming were assessed in microcosms of Poa cita using a natural abundance δ(13)C discrimination approach. RESULTS: The temperature response of R(S) was found to be regulated primarily by R(A), which accounted for 70 % of total soil respiration. Heterotrophic respiration was less sensitive to temperature in the presence of plant roots, resulting in negative priming effects with increasing temperature. CONCLUSIONS: The results emphasize the importance of roots in regulating the temperature response of R(S), and a framework is presented for further investigation into temperature effects on heterotrophic respiration and rhizosphere priming, which could be applied to other soil and vegetation types to improve models of soil carbon turnover.


Subject(s)
Carbon/metabolism , Plant Roots/metabolism , Poa/metabolism , Soil Microbiology , Soil/chemistry , Cell Respiration , Heterotrophic Processes , Plant Roots/cytology , Rhizosphere , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...