Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
1.
Article in English | MEDLINE | ID: mdl-38431223

ABSTRACT

BACKGROUND & AIMS: Colonoscopic surveillance is recommended in patients with colonic inflammatory bowel disease (IBD) given their increased risk of colorectal cancer (CRC). We aimed to develop and validate a dynamic prediction model for the occurrence of advanced colorectal neoplasia (aCRN, including high-grade dysplasia and CRC) in IBD. METHODS: We pooled data from 6 existing cohort studies from Canada, The Netherlands, the United Kingdom, and the United States. Patients with IBD and an indication for CRC surveillance were included if they underwent at least 1 follow-up procedure. Exclusion criteria included prior aCRN, prior colectomy, or an unclear indication for surveillance. Predictor variables were selected based on the literature. A dynamic prediction model was developed using a landmarking approach based on Cox proportional hazard modeling. Model performance was assessed with Harrell's concordance-statistic (discrimination) and by calibration curves. Generalizability across surveillance cohorts was evaluated by internal-external cross-validation. RESULTS: The surveillance cohorts comprised 3731 patients, enrolled and followed-up in the time period from 1973 to 2021, with a median follow-up period of 5.7 years (26,336 patient-years of follow-up evaluation); 146 individuals were diagnosed with aCRN. The model contained 8 predictors, with a cross-validation median concordance statistic of 0.74 and 0.75 for a 5- and 10-year prediction window, respectively. Calibration plots showed good calibration. Internal-external cross-validation results showed medium discrimination and reasonable to good calibration. CONCLUSIONS: The new prediction model showed good discrimination and calibration, however, generalizability results varied. Future research should focus on formal external validation and relate predicted aCRN risks to surveillance intervals before clinical application.

2.
Cancer Res ; 84(10): 1560-1569, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38479434

ABSTRACT

Genomic analysis of the T-cell receptor (TCR) reveals the strength, breadth, and clonal dynamics of the adaptive immune response to pathogens or cancer. The diversity of the TCR repertoire, however, means that sequencing is technically challenging, particularly for samples with low-quality, degraded nucleic acids. Here, we developed and validated FUME-TCRseq, a robust and sensitive RNA-based TCR sequencing methodology that is suitable for formalin-fixed paraffin-embedded samples and low amounts of input material. FUME-TCRseq incorporates unique molecular identifiers into each molecule of cDNA, allowing correction for sequencing errors and PCR bias. Using RNA extracted from colorectal and head and neck cancers to benchmark the accuracy and sensitivity of FUME-TCRseq against existing methods demonstrated excellent concordance between the datasets. Furthermore, FUME-TCRseq detected more clonotypes than a commercial RNA-based alternative, with shorter library preparation time and significantly lower cost. The high sensitivity and the ability to sequence RNA of poor quality and limited amount enabled quantitative analysis of small numbers of cells from archival tissue sections, which is not possible with other methods. Spatially resolved FUME-TCRseq analysis of colorectal cancers using macrodissected archival samples revealed the shifting T-cell landscapes at the transition to an invasive phenotype and between tumor subclones containing distinct driver alterations. In summary, FUME-TCRseq represents an accurate, sensitive, and low-cost tool for the characterization of T-cell repertoires, particularly in samples with low-quality RNA that have not been accessible using existing methodology. SIGNIFICANCE: FUME-TCRseq is a TCR sequencing methodology that supports sensitive and spatially resolved detection of TCR clones in archival clinical specimens, which can facilitate longitudinal tracking of immune responses through disease course and treatment.


Subject(s)
Colorectal Neoplasms , Receptors, Antigen, T-Cell , Humans , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/immunology , RNA/genetics , RNA Stability
3.
Mod Pathol ; 37(5): 100465, 2024 May.
Article in English | MEDLINE | ID: mdl-38460675

ABSTRACT

Primary cutaneous follicle center lymphoma (PCFCL) has an excellent prognosis using local treatment, whereas nodal follicular lymphoma (nFL), occasionally presenting with cutaneous spread, often requires systemic therapy. Distinction of the 2 diseases based on histopathology alone might be challenging. Copy number alterations (CNAs) have scarcely been explored on a genome-wide scale in PCFCL; however, they might serve as potential biomarkers during differential diagnosis and risk stratification. Low-coverage whole-genome sequencing is a robust, high-throughput method for genome-wide copy number profiling. In this study, we analyzed 28 PCFCL samples from 20 patients and compared the copy number profiles with a cohort of diagnostic samples of 64 nFL patients. Although the copy number profile of PCFCL was similar to that of nFL, PCFCL lacked amplifications of 18q, with the frequency peaking at 18q21.33 in nFL cases involving the BCL2 locus (PCFCL: 5.0% vs nFL: 31.3%, P = .018, Fisher exact test). Development of distant cutaneous spread was significantly associated with higher genomic instability including the proportion of genome altered (0.02 vs 0.13, P = .033) and number of CNAs (2 vs 9 P = .017), as well as the enrichment of 2p22.2-p15 amplification involving REL and XPO1 (6.3% vs 60.0%, P = .005), 3q23-q24 amplification (0.0% vs 50.0%, P = .004), 6q16.1-q23.3 deletion (6.3% vs 50.0%, P = .018), and 9p21.3 deletion covering CDKN2A and CDKN2B loci (0.0% vs 40.0%, P = .014, all Fisher exact test) in PCFCL. Analysis of sequential tumor samples in 2 cases harboring an unfavorable clinical course pointed to the acquisition of 2p amplification in the earliest common progenitor underlining its pivotal role in malignant transformation. By performing genome-wide copy number profiling on the largest patient cohort to date, we identified distinctive CNA alterations conceivably facilitating the differential diagnosis of PCFCL and secondary cutaneous involvement of nFL and potentially aiding the risk stratification of patients with PCFCL in the future.


Subject(s)
DNA Copy Number Variations , Lymphoma, Follicular , Skin Neoplasms , Whole Genome Sequencing , Humans , Lymphoma, Follicular/genetics , Lymphoma, Follicular/pathology , Lymphoma, Follicular/diagnosis , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Skin Neoplasms/diagnosis , Female , Male , Middle Aged , Aged , Diagnosis, Differential , Prognosis , Adult , Aged, 80 and over , Biomarkers, Tumor/genetics
4.
bioRxiv ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38405882

ABSTRACT

Immune system control is a major hurdle that cancer evolution must circumvent. The relative timing and evolutionary dynamics of subclones that have escaped immune control remain incompletely characterized, and how immune-mediated selection shapes the epigenome has received little attention. Here, we infer the genome- and epigenome-driven evolutionary dynamics of tumour-immune coevolution within primary colorectal cancers (CRCs). We utilise our existing CRC multi-region multi-omic dataset that we supplement with high-resolution spatially-resolved neoantigen sequencing data and highly multiplexed imaging of the tumour microenvironment (TME). Analysis of somatic chromatin accessibility alterations (SCAAs) reveals frequent somatic loss of accessibility at antigen presenting genes, and that SCAAs contribute to silencing of neoantigens. We observe that strong immune escape and exclusion occur at the outset of CRC formation, and that within tumours, including at the microscopic level of individual tumour glands, additional immune escape alterations have negligible consequences for the immunophenotype of cancer cells. Further minor immuno-editing occurs during local invasion and is associated with TME reorganisation, but that evolutionary bottleneck is relatively weak. Collectively, we show that immune evasion in CRC follows a "Big Bang" evolutionary pattern, whereby genetic, epigenetic and TME-driven immune evasion acquired by the time of transformation defines subsequent cancer-immune evolution.

5.
J Mol Diagn ; 26(4): 245-256, 2024 04.
Article in English | MEDLINE | ID: mdl-38280422

ABSTRACT

Tumor relapse is well recognized to arise from treatment-resistant residual populations. Strategies enriching such populations for in-depth downstream analyses focus on tumor-specific surface markers; however, enrichment using intracellular biomarkers remains challenging. Using B-cell lymphoma as an exemplar, we demonstrate feasibility to enrich B-cell lymphoma 2 (BCL2)high populations, a surrogate marker for t(14;18)+ lymphomas, for use in downstream applications. Different fixation protocols were assessed for impact on antibody expression and RNA integrity; glyoxal fixation demonstrated superior results regarding minimal effects on surface and intracellular expression, and RNA quality, compared with alternative fixatives evaluated. Furthermore, t(14;18)+ B cells were effectively detected using intracellular BCL2 overexpression to facilitate tumor cell enrichment. Tumor cell populations were enriched using the cellenONE F1.4 single-cell sorting platform, which detected and dispensed BCL2high-expressing cells directly into library preparation reagents for transcriptome analyses. Sorted glyoxal-fixed cells generated good quality sequencing libraries, with high concordance between live and fixed single-cell transcriptomic profiles, discriminating cell populations predominantly on B-cell biology. Overall, we successfully developed a proof-of-concept workflow employing a robust cell preparation protocol for intracellular markers combined with cell enrichment using the cellenONE platform, providing an alternative to droplet-based technologies when cellular input is low or requires prior enrichment to detect rare populations. This workflow has wider prognostic and therapeutic potential to study residual cells in a pan-cancer setting.


Subject(s)
Neoplasm Recurrence, Local , RNA , Humans , Workflow , Neoplasm, Residual , RNA/genetics , Glyoxal , Proto-Oncogene Proteins c-bcl-2/genetics
6.
Mod Pathol ; 37(3): 100419, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38158125

ABSTRACT

Due to their increased cancer risk, patients with longstanding inflammatory bowel disease are offered endoscopic surveillance with concomitant histopathologic assessments, aimed at identifying dysplasia as a precursor lesion of colitis-associated colorectal cancer. However, this strategy is beset with difficulties and limitations. Recently, a novel classification criterion for colitis-associated low-grade dysplasia has been proposed, and an association between nonconventional dysplasia and progression was reported, suggesting the possibility of histology-based stratification of patients with colitis-associated lesions. Here, a cohort of colitis-associated lesions was assessed by a panel of 6 experienced pathologists to test the applicability of the published classification criteria and try and validate the association between nonconventional dysplasia and progression. While confirming the presence of different morphologic patterns of colitis-associated dysplasia, the study demonstrated difficulties concerning diagnostic reproducibility between pathologists and was unable to validate the association of nonconventional dysplasia with cancer progression. Our study highlights the overall difficulty of using histologic assessment of precursor lesions for cancer risk prediction in inflammatory bowel disease patients and suggests the need for a different diagnostic strategy that can objectively identify high-risk phenotypes.


Subject(s)
Colitis, Ulcerative , Colitis , Colorectal Neoplasms , Inflammatory Bowel Diseases , Neoplasms , Humans , Reproducibility of Results , Colitis/complications , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/pathology , Colonoscopy , Hyperplasia , Colorectal Neoplasms/pathology , Colitis, Ulcerative/complications , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/pathology
7.
Trends Cell Biol ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37968225

ABSTRACT

Non-genetic alterations can produce changes in a cell's phenotype. In cancer, these phenomena can influence a cell's fitness by conferring access to heritable, beneficial phenotypes. Herein, we argue that current discussions of 'phenotypic plasticity' in cancer evolution ignore a salient feature of the original definition: namely, that it occurs in response to an environmental change. We suggest 'phenotypic noise' be used to distinguish non-genetic changes in phenotype that occur independently from the environment. We discuss the conceptual and methodological techniques used to identify these phenomena during cancer evolution. We propose that the distinction will guide efforts to define mechanisms of phenotype change, accelerate translational work to manipulate phenotypes through treatment, and, ultimately, improve patient outcomes.

8.
Nat Commun ; 14(1): 7827, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030613

ABSTRACT

The dominant mutational signature in colorectal cancer genomes is C > T deamination (COSMIC Signature 1) and, in a small subgroup, mismatch repair signature (COSMIC signatures 6 and 44). Mutations in common colorectal cancer driver genes are often not consistent with those signatures. Here we perform whole-genome sequencing of normal colon crypts from cancer patients, matched to a previous multi-omic tumour dataset. We analyse normal crypts that were distant vs adjacent to the cancer. In contrast to healthy individuals, normal crypts of colon cancer patients have a high incidence of pks + (polyketide synthases) E.coli (Escherichia coli) mutational and indel signatures, and this is confirmed by metagenomics. These signatures are compatible with many clonal driver mutations detected in the corresponding cancer samples, including in chromatin modifier genes, supporting their role in early tumourigenesis. These results provide evidence that pks + E.coli is a potential driver of carcinogenesis in the human gut.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Humans , Escherichia coli/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mutation , Carcinogenesis/genetics
9.
bioRxiv ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37546942

ABSTRACT

Drug resistance results in poor outcomes for most patients with metastatic cancer. Adaptive Therapy (AT) proposes to address this by exploiting presumed fitness costs incurred by drug-resistant cells when drug is absent, and prescribing dose reductions to allow fitter, sensitive cells to re-grow and re-sensitise the tumour. However, empirical evidence for treatment-induced fitness change is lacking. We show that fitness costs in chemotherapy-resistant ovarian cancer cause selective decline and apoptosis of resistant populations in low-resource conditions. Moreover, carboplatin AT caused fluctuations in sensitive/resistant tumour population size in vitro and significantly extended survival of tumour-bearing mice. In sequential blood-derived cell-free DNA and tumour samples obtained longitudinally from ovarian cancer patients during treatment, we inferred resistant cancer cell population size through therapy and observed it correlated strongly with disease burden. These data have enabled us to launch a multicentre, phase 2 randomised controlled trial (ACTOv) to evaluate AT in ovarian cancer.

10.
Res Sq ; 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37461608

ABSTRACT

Cancer is pervasive across multicellular species, but what explains differences in cancer prevalence across species? Using 16,049 necropsy records for 292 species spanning three clades (amphibians, sauropsids and mammals) we found that neoplasia and malignancy prevalence increases with adult weight (contrary to Peto's Paradox) and somatic mutation rate, but decreases with gestation time. Evolution of cancer susceptibility appears to have undergone sudden shifts followed by stabilizing selection. Outliers for neoplasia prevalence include the common porpoise (<1.3%), the Rodrigues fruit bat (<1.6%) the black-footed penguin (<0.4%), ferrets (63%) and opossums (35%). Discovering why some species have particularly high or low levels of cancer may lead to a better understanding of cancer syndromes and novel strategies for the management and prevention of cancer.

11.
Nat Commun ; 14(1): 4502, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37495577

ABSTRACT

Interest in spatial omics is on the rise, but generation of highly multiplexed images remains challenging, due to cost, expertise, methodical constraints, and access to technology. An alternative approach is to register collections of whole slide images (WSI), generating spatially aligned datasets. WSI registration is a two-part problem, the first being the alignment itself and the second the application of transformations to huge multi-gigapixel images. To address both challenges, we developed Virtual Alignment of pathoLogy Image Series (VALIS), software which enables generation of highly multiplexed images by aligning any number of brightfield and/or immunofluorescent WSI, the results of which can be saved in the ome.tiff format. Benchmarking using publicly available datasets indicates VALIS provides state-of-the-art accuracy in WSI registration and 3D reconstruction. Leveraging existing open-source software tools, VALIS is written in Python, providing a free, fast, scalable, robust, and easy-to-use pipeline for registering multi-gigapixel WSI, facilitating downstream spatial analyses.


Subject(s)
Microscopy , Software , Microscopy/methods , Technology
13.
Genome Biol ; 24(1): 144, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37340508

ABSTRACT

Phylogenetic trees based on copy number profiles from multiple samples of a patient are helpful to understand cancer evolution. Here, we develop a new maximum likelihood method, CNETML, to infer phylogenies from such data. CNETML is the first program to jointly infer the tree topology, node ages, and mutation rates from total copy numbers of longitudinal samples. Our extensive simulations suggest CNETML performs well on copy numbers relative to ploidy and under slight violation of model assumptions. The application of CNETML to real data generates results consistent with previous discoveries and provides novel early copy number events for further investigation.


Subject(s)
DNA Copy Number Variations , Neoplasms , Humans , Phylogeny , Mutation Rate
14.
Cancer Treat Rev ; 118: 102583, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37331179

ABSTRACT

The evolution of drug-resistant cell subpopulations causes cancer treatment failure. Current preclinical evidence shows that it is possible to model herding of clonal evolution and collateral sensitivity where an initial treatment could favourably influence the response to a subsequent one. Novel therapy strategies exploiting this understanding are being considered, and clinical trial designs for steering cancer evolution are needed. Furthermore, preclinical evidence suggests that different subsets of drug-sensitive and resistant clones could compete between themselves for nutrients/blood supply, and clones that populate a tumour do so at the expense of other clones. Treatment paradigms based on this clinical application of exploiting cell-cell competition include intermittent dosing regimens or cycling different treatments before progression. This will require clinical trial designs different from the conventional practice of evaluating responses to individual therapy regimens. Next-generation sequencing to assess clonal dynamics longitudinally will improve current radiological assessment of clinical response/resistance and be incorporated into trials exploiting evolution. Furthermore, if understood, clonal evolution can be used to therapeutic advantage, improving patient outcomes based on a new generation of clinical trials.


Subject(s)
Neoplasms , Humans , Clinical Trials as Topic , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Clonal Evolution/genetics
15.
Nat Commun ; 14(1): 2408, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37100774

ABSTRACT

Cancers occur across species. Understanding what is consistent and varies across species can provide new insights into cancer initiation and evolution, with significant implications for animal welfare and wildlife conservation. We build a pan-species cancer digital pathology atlas (panspecies.ai) and conduct a pan-species study of computational comparative pathology using a supervised convolutional neural network algorithm trained on human samples. The artificial intelligence algorithm achieves high accuracy in measuring immune response through single-cell classification for two transmissible cancers (canine transmissible venereal tumour, 0.94; Tasmanian devil facial tumour disease, 0.88). In 18 other vertebrate species (mammalia = 11, reptilia = 4, aves = 2, and amphibia = 1), accuracy (range 0.57-0.94) is influenced by cell morphological similarity preserved across different taxonomic groups, tumour sites, and variations in the immune compartment. Furthermore, a spatial immune score based on artificial intelligence and spatial statistics is associated with prognosis in canine melanoma and prostate tumours. A metric, named morphospace overlap, is developed to guide veterinary pathologists towards rational deployment of this technology on new samples. This study provides the foundation and guidelines for transferring artificial intelligence technologies to veterinary pathology based on understanding of morphological conservation, which could vastly accelerate developments in veterinary medicine and comparative oncology.


Subject(s)
Animals, Wild , Prostatic Neoplasms , Male , Animals , Humans , Dogs , Artificial Intelligence , Neural Networks, Computer , Pan troglodytes
16.
Nat Genet ; 55(3): 451-460, 2023 03.
Article in English | MEDLINE | ID: mdl-36894710

ABSTRACT

In cancer, evolutionary forces select for clones that evade the immune system. Here we analyzed >10,000 primary tumors and 356 immune-checkpoint-treated metastases using immune dN/dS, the ratio of nonsynonymous to synonymous mutations in the immunopeptidome, to measure immune selection in cohorts and individuals. We classified tumors as immune edited when antigenic mutations were removed by negative selection and immune escaped when antigenicity was covered up by aberrant immune modulation. Only in immune-edited tumors was immune predation linked to CD8 T cell infiltration. Immune-escaped metastases experienced the best response to immunotherapy, whereas immune-edited patients did not benefit, suggesting a preexisting resistance mechanism. Similarly, in a longitudinal cohort, nivolumab treatment removes neoantigens exclusively in the immunopeptidome of nonimmune-edited patients, the group with the best overall survival response. Our work uses dN/dS to differentiate between immune-edited and immune-escaped tumors, measuring potential antigenicity and ultimately helping predict response to treatment.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Nivolumab , Antigens, Neoplasm/genetics , CD8-Positive T-Lymphocytes , Mutation
17.
PLoS Comput Biol ; 19(3): e1010952, 2023 03.
Article in English | MEDLINE | ID: mdl-36913406

ABSTRACT

The signature of early cancer dynamics on the spatial arrangement of tumour cells is poorly understood, and yet could encode information about how sub-clones grew within the expanding tumour. Novel methods of quantifying spatial tumour data at the cellular scale are required to link evolutionary dynamics to the resulting spatial architecture of the tumour. Here, we propose a framework using first passage times of random walks to quantify the complex spatial patterns of tumour cell population mixing. First, using a simple model of cell mixing we demonstrate how first passage time statistics can distinguish between different pattern structures. We then apply our method to simulated patterns of mutated and non-mutated tumour cell population mixing, generated using an agent-based model of expanding tumours, to explore how first passage times reflect mutant cell replicative advantage, time of emergence and strength of cell pushing. Finally, we explore applications to experimentally measured human colorectal cancer, and estimate parameters of early sub-clonal dynamics using our spatial computational model. We infer a wide range of sub-clonal dynamics, with mutant cell division rates varying between 1 and 4 times the rate of non-mutated cells across our sample set. Some mutated sub-clones emerged after as few as 100 non-mutant cell divisions, and others only after 50,000 divisions. The majority were consistent with boundary driven growth or short-range cell pushing. By analysing multiple sub-sampled regions in a small number of samples, we explore how the distribution of inferred dynamics could inform about the initial mutational event. Our results demonstrate the efficacy of first passage time analysis as a new methodology in spatial analysis of solid tumour tissue, and suggest that patterns of sub-clonal mixing can provide insights into early cancer dynamics.


Subject(s)
Clonal Evolution , Colorectal Neoplasms , Humans , Mutation , Cell Division , Colorectal Neoplasms/genetics
18.
bioRxiv ; 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36824942

ABSTRACT

Cancer is pervasive across multicellular species. Are there any patterns that can explain differences in cancer prevalence across species? Using 16,049 necropsy records for 292 species spanning three clades (amphibians, sauropsids and mammals) we found that neoplasia and malignancy prevalence increases with adult weight and decreases with gestation time, contrary to Peto’s Paradox. Evolution of cancer susceptibility appears to have undergone sudden shifts followed by stabilizing selection. Outliers for neoplasia prevalence include the common porpoise (<1.3%), the Rodrigues fruit bat (<1.6%) the black-footed penguin (<0.4%), ferrets (63%) and opossums (35%). Discovering why some species have particularly high or low levels of cancer may lead to a better understanding of cancer syndromes and novel strategies for the management and prevention of cancer.

19.
Cancer Res ; 82(24): 4487-4496, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36214625

ABSTRACT

The majority of human cancers evolve over time through the stepwise accumulation of somatic mutations followed by clonal selection akin to Darwinian evolution. However, the in-depth mechanisms that govern clonal dynamics and selection remain elusive, particularly during the earliest stages of tissue transformation. Cell competition (CC), often referred to as 'survival of the fittest' at the cellular level, results in the elimination of less fit cells by their more fit neighbors supporting optimal organism health and function. Alternatively, CC may allow an uncontrolled expansion of super-fit cancer cells to outcompete their less fit neighbors thereby fueling tumorigenesis. Recent research discussed herein highlights the various non-cell-autonomous principles, including interclonal competition and cancer microenvironment competition supporting the ability of a tumor to progress from the initial stages to tissue colonization. In addition, we extend current insights from CC-mediated clonal interactions and selection in normal tissues to better comprehend those factors that contribute to cancer development.


Subject(s)
Cell Competition , Neoplasms , Humans , Cell Competition/genetics , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Neoplasms/genetics , Neoplasms/pathology , Tumor Microenvironment , Mutation
20.
Nature ; 611(7937): 733-743, 2022 11.
Article in English | MEDLINE | ID: mdl-36289335

ABSTRACT

Colorectal malignancies are a leading cause of cancer-related death1 and have undergone extensive genomic study2,3. However, DNA mutations alone do not fully explain malignant transformation4-7. Here we investigate the co-evolution of the genome and epigenome of colorectal tumours at single-clone resolution using spatial multi-omic profiling of individual glands. We collected 1,370 samples from 30 primary cancers and 8 concomitant adenomas and generated 1,207 chromatin accessibility profiles, 527 whole genomes and 297 whole transcriptomes. We found positive selection for DNA mutations in chromatin modifier genes and recurrent somatic chromatin accessibility alterations, including in regulatory regions of cancer driver genes that were otherwise devoid of genetic mutations. Genome-wide alterations in accessibility for transcription factor binding involved CTCF, downregulation of interferon and increased accessibility for SOX and HOX transcription factor families, suggesting the involvement of developmental genes during tumourigenesis. Somatic chromatin accessibility alterations were heritable and distinguished adenomas from cancers. Mutational signature analysis showed that the epigenome in turn influences the accumulation of DNA mutations. This study provides a map of genetic and epigenetic tumour heterogeneity, with fundamental implications for understanding colorectal cancer biology.


Subject(s)
Colorectal Neoplasms , Epigenome , Genome, Human , Mutation , Humans , Adenoma/genetics , Adenoma/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Chromatin/genetics , Chromatin/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Epigenome/genetics , Oncogenes/genetics , Transcription Factors/metabolism , Genome, Human/genetics , Interferons
SELECTION OF CITATIONS
SEARCH DETAIL
...