Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Trends Neurosci ; 46(11): 901-911, 2023 11.
Article in English | MEDLINE | ID: mdl-37777345

ABSTRACT

Epidemiological evidence demonstrates a link between air pollution exposure and the onset and progression of cognitive impairment and Alzheimer's disease (AD). However, current understanding of the underlying pathophysiological mechanisms is limited. This opinion article examines the hypothesis that air pollution-induced impairment of glymphatic clearance represents a crucial etiological event in the development of AD. Exposure to airborne particulate matter (PM) leads to systemic inflammation and neuroinflammation, increased metal load, respiratory and cardiovascular dysfunction, and sleep abnormalities. All these factors are known to reduce the efficiency of glymphatic clearance. Rescuing glymphatic function by restricting the impact of causative agents, and improving sleep and cardiovascular system health, may increase the efficiency of waste metabolite clearance and subsequently slow the progression of AD. In sum, we introduce air pollution-mediated glymphatic impairment as an important mechanistic factor to be considered when interpreting the etiology and progression of AD as well as its responsiveness to therapeutic interventions.


Subject(s)
Air Pollution , Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/etiology , Alzheimer Disease/therapy , Air Pollution/adverse effects , Particulate Matter/toxicity
2.
Nanomaterials (Basel) ; 13(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37630884

ABSTRACT

The innate immune system is the first line of defense against external threats through the initiation and regulation of inflammation. Macrophage differentiation into functional phenotypes influences the fate of nanomaterials taken up by these immune cells. High-resolution electron microscopy was used to investigate the uptake, distribution, and biotransformation of nanoceria in human and murine M1 and M2 macrophages in unprecedented detail. We found that M1 and M2 macrophages internalize nanoceria differently. M1-type macrophages predominantly sequester nanoceria near the plasma membrane, whereas nanoceria are more uniformly distributed throughout M2 macrophage cytoplasm. In contrast, both macrophage phenotypes show identical nanoceria biotransformation to cerium phosphate nanoneedles and simultaneous nanoceria with ferritin co-precipitation within the cells. Ferritin biomineralization is a direct response to nanoparticle uptake inside both macrophage phenotypes. We also found that the same ferritin biomineralization mechanism occurs after the uptake of Ce-ions into polarized macrophages and into unpolarized human monocytes and murine RAW 264.7 cells. These findings emphasize the need for evaluating ferritin biomineralization in studies that involve the internalization of nano objects, ranging from particles to viruses to biomolecules, to gain greater mechanistic insights into the overall immune responses to nano objects.

3.
Environ Res ; 230: 115607, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36965793

ABSTRACT

This paper summarizes recent insights into causal biological mechanisms underlying the carcinogenicity of asbestos. It addresses their implications for the shapes of exposure-response curves and considers recent epidemiologic trends in malignant mesotheliomas (MMs) and lung fiber burden studies. Since the commercial amphiboles crocidolite and amosite pose the highest risk of MMs and contain high levels of iron, endogenous and exogenous pathways of iron injury and repair are discussed. Some practical implications of recent developments are that: (1) Asbestos-cancer exposure-response relationships should be expected to have non-zero background rates; (2) Evidence from inflammation biology and other sources suggests that there are exposure concentration thresholds below which exposures do not increase inflammasome-mediated inflammation or resulting inflammation-mediated cancer risks above background risk rates; and (3) The size of the suggested exposure concentration threshold depends on both the detailed time patterns of exposure on a time scale of hours to days and also on the composition of asbestos fibers in terms of their physiochemical properties. These conclusions are supported by complementary strands of evidence including biomathematical modeling, cell biology and biochemistry of asbestos-cell interactions in vitro and in vivo, lung fiber burden analyses and epidemiology showing trends in human exposures and MM rates.


Subject(s)
Asbestos , Lung Neoplasms , Mesothelioma , Humans , Asbestos/toxicity , Mesothelioma/chemically induced , Mesothelioma/epidemiology , Lung Neoplasms/chemically induced , Lung Neoplasms/epidemiology , Lung/pathology , Asbestos, Amphibole/toxicity , Inflammation/metabolism
5.
Orthod Craniofac Res ; 24(4): 494-501, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33540478

ABSTRACT

OBJECTIVES: To evaluate the role of serotonin in the development of a biomimetic enamel-like material in vitro. SETTING AND SAMPLE POPULATION: Immortalized murine oral keratinocytes raised from adult mouse mucosa were cultured in vitro. In addition, specimens incorporating molar tooth buds harvested from mice were included in our studies. MATERIALS AND METHODS: We used cell-based scaffold-free tissue engineering to assemble three-dimensional (3D) organoids into complex tissue constructs that closely emulate the complexity of adult enamel. We also analysed mouse molar specimens using immunohistochemistry for serotonin expression as well as its cognate receptor. RESULTS: TGF-ß1-reprogrammed murine oral keratinocytes formed organoids that laid down an amelogenin-rich protein matrix when grown as three-dimensional (3D) cultures in the presence of serotonin. Following mineralization, the newly formed crystals were densified under pressure and vacuum to produce a biomimetic enamel-like material that demonstrated parallel alignment of hydroxyapatite crystals with some interspaced residual organoid matter into enamel prism-like structures conferring size, mechanical properties comparable to tooth enamel, including light translucency. Serotonin expression was localized by immunohistochemistry proximal to the enamel organ of developing molar buds. Moreover, serotonin HTRb2 receptor expression was localized on ameloblasts within the enamel organ proximal to the area where serotonin was immunolocalized. CONCLUSIONS: Our results demonstrate that serotonin is inductive in the development of a biomimetic enamel-like material from reprogrammed oral epithelial keratinocytes in vitro. The facileness of harvesting adult somatic cells together with the versatility of our approach offers exciting opportunities to address regenerative challenges linked to lost enamel.


Subject(s)
Biomimetics , Serotonin , Amelogenin , Animals , Dental Enamel , Keratinocytes , Mice
6.
Nanotoxicology ; 14(6): 827-846, 2020 08.
Article in English | MEDLINE | ID: mdl-32552239

ABSTRACT

Prior studies showed nanoparticle clearance was different in C57BL/6 versus BALB/c mice, strains prone to Th1 and Th2 immune responses, respectively. Objective: Assess nanoceria (cerium oxide, CeO2 nanoparticle) uptake time course and organ distribution, cellular and oxidative stress, and bioprocessing as a function of mouse strain. Methods: C57BL/6 and BALB/c female mice were i.p. injected with 10 mg/kg nanoceria or vehicle and terminated 0.5 to 24 h later. Organs were collected for cerium analysis; light and electron microscopy with elemental mapping; and protein carbonyl, IL-1ß, and caspase-1 determination. Results: Peripheral organ cerium significantly increased, generally more in C57BL/6 mice. Caspase-1 was significantly elevated in the liver at 6 h, to a greater extent in BALB/c mice, suggesting inflammasome pathway activation. Light microscopy revealed greater liver vacuolation in C57BL/6 mice and a nanoceria-induced decrease in BALB/c but not C57BL/6 mice vacuolation. Nanoceria increased spleen lymphoid white pulp cell density in BALB/c but not C57BL/6 mice. Electron microscopy showed intracellular nanoceria particles bioprocessed to form crystalline cerium phosphate nanoneedles. Ferritin accumulation was greatly increased proximal to the nanoceria, forming core-shell-like structures in C57BL/6 but even distribution in BALB/c mice. Conclusions: BALB/c mice were more responsive to nanoceria-induced effects, e.g. liver caspase-1 activation, reduced liver vacuolation, and increased spleen cell density. Nanoceria uptake, initiation of bioprocessing, and crystalline cerium phosphate nanoneedle formation were rapid. Ferritin greatly increased with a macrophage phenotype-dependent distribution. Further study will be needed to understand the mechanisms underlying the observed differences.


Subject(s)
Cerium/toxicity , Liver/drug effects , Nanoparticles/toxicity , Oxidative Stress/drug effects , Spleen/drug effects , Animals , Cerium/chemistry , Cerium/metabolism , Female , Liver/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microscopy, Electron , Nanoparticles/chemistry , Nanoparticles/metabolism , Phosphates/metabolism , Species Specificity , Spleen/metabolism , Surface Properties , Tissue Distribution
7.
Chem Res Toxicol ; 33(5): 1145-1162, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32349469

ABSTRACT

A variety of imaging and analytical methods have been developed to study nanoparticles in cells. Each has its benefits, limitations, and varying degrees of expense and difficulties in implementation. High-resolution analytical scanning transmission electron microscopy (HRSTEM) has the unique ability to image local cellular environments adjacent to a nanoparticle at near atomic resolution and apply analytical tools to these environments such as energy dispersive spectroscopy and electron energy loss spectroscopy. These tools can be used to analyze particle location, translocation and potential reformation, ion dispersion, and in vivo synthesis of second-generation nanoparticles. Such analyses can provide in depth understanding of tissue-particle interactions and effects that are caused by the environmental "invader" nanoparticles. Analytical imaging can also distinguish phases that form due to the transformation of "invader" nanoparticles in contrast to those that are triggered by a response mechanism, including the commonly observed iron biomineralization in the form of ferritin nanoparticles. The analyses can distinguish ion species, crystal phases, and valence of parent nanoparticles and reformed or in vivo synthesized phases throughout the tissue. This article will briefly review the plethora of methods that have been developed over the last 20 years with an emphasis on the state-of-the-art techniques used to image and analyze nanoparticles in cells and highlight the sample preparation necessary for biological thin section observation in a HRSTEM. Specific applications that provide visual and chemical mapping of the local cellular environments surrounding parent nanoparticles and second-generation phases are demonstrated, which will help to identify novel nanoparticle-produced adverse effects and their associated mechanisms.


Subject(s)
Nanostructures/adverse effects , Nanostructures/analysis , Organ Specificity , Microscopy, Electron, Transmission
8.
Sci Rep ; 10(1): 458, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949204

ABSTRACT

Barium sulfate (BaSO4) was considered to be poorly-soluble and of low toxicity, but BaSO4 NM-220 showed a surprisingly short retention after intratracheal instillation in rat lungs, and incorporation of Ba within the bones. Here we show that static abiotic dissolution cannot rationalize this result, whereas two dynamic abiotic dissolution systems (one flow-through and one flow-by) indicated 50% dissolution after 5 to 6 days at non-saturating conditions regardless of flow orientation, which is close to the in vivo half-time of 9.6 days. Non-equilibrium conditions were thus essential to simulate in vivo biodissolution. Instead of shrinking from 32 nm to 23 nm (to match the mass loss to ions), TEM scans of particles retrieved from flow-cells showed an increase to 40 nm. Such transformation suggested either material transport through interfacial contact or Ostwald ripening at super-saturating conditions and was also observed in vivo inside macrophages by high-resolution TEM following 12 months inhalation exposure. The abiotic flow cells thus adequately predicted the overall pulmonary biopersistence of the particles that was mediated by non-equilibrium dissolution and recrystallization. The present methodology for dissolution and transformation fills a high priority gap in nanomaterial hazard assessment and is proposed for the implementation of grouping and read-across by dissolution rates.


Subject(s)
Barium Sulfate/chemistry , Barium Sulfate/metabolism , Biomimetics/instrumentation , Lung/metabolism , Nanoparticles/administration & dosage , Nanoparticles/metabolism , Administration, Inhalation , Barium Sulfate/administration & dosage , Kinetics , Solubility
9.
Environ Sci Nano ; 6(5): 1478-1492, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31372227

ABSTRACT

Nanoparticle dissolution in local milieu can affect their ecotoxicity and therapeutic applications. For example, carboxylic acid release from plant roots can solubilize nanoceria in the rhizosphere, affecting cerium uptake in plants. Nanoparticle dispersions were dialyzed against ten carboxylic acid solutions for up to 30 weeks; the membrane passed cerium-ligand complexes but not nanoceria. Dispersion and solution samples were analyzed for cerium by inductively coupled plasma mass spectrometry (ICP-MS). Particle size and shape distributions were measured by transmission electron microscopy (TEM). Nanoceria dissolved in all carboxylic acid solutions, leading to cascades of progressively smaller nanoparticles and producing soluble products. The dissolution rate was proportional to nanoparticle surface area. Values of the apparent dissolution rate coefficients varied with the ligand. Both nanoceria size and shape distributions were altered by the dissolution process. Density functional theory (DFT) estimates for some possible Ce(IV) products showed that their dissolution was thermodynamically favored. However, dissolution rate coefficients did not generally correlate with energy of formation values. The surface-controlled dissolution model provides a quantitative measure for nanoparticle dissolution rates: further studies of dissolution cascades should lead to improved understanding of mechanisms and processes at nanoparticle surfaces.

10.
Part Fibre Toxicol ; 16(1): 26, 2019 Jun 27.
Article in English | MEDLINE | ID: mdl-31248442

ABSTRACT

After the publication of this article [1] it was hihglighted that the number of deaths related to natural disasters was incorrectly reported in the second paragraph of the Hazards from Natural particulates and the evolution of the biosphere section. This correction article shows the correct and incorrect statement. This correction does not change the idea presented in the article that from an evolutionary view point, natural disasters account only for a small fraction of the people on the planet. The original article has been updated.

11.
Part Fibre Toxicol ; 16(1): 19, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31014371

ABSTRACT

BACKGROUND: Particles and fibres affect human health as a function of their properties such as chemical composition, size and shape but also depending on complex interactions in an organism that occur at various levels between particle uptake and target organ responses. While particulate pollution is one of the leading contributors to the global burden of disease, particles are also increasingly used for medical purposes. Over the past decades we have gained considerable experience in how particle properties and particle-bio interactions are linked to human health. This insight is useful for improved risk management in the case of unwanted health effects but also for developing novel medical therapies. The concepts that help us better understand particles' and fibres' risks include the fate of particles in the body; exposure, dosimetry and dose-metrics and the 5 Bs: bioavailability, biopersistence, bioprocessing, biomodification and bioclearance of (nano)particles. This includes the role of the biomolecule corona, immunity and systemic responses, non-specific effects in the lungs and other body parts, particle effects and the developing body, and the link from the natural environment to human health. The importance of these different concepts for the human health risk depends not only on the properties of the particles and fibres, but is also strongly influenced by production, use and disposal scenarios. CONCLUSIONS: Lessons learned from the past can prove helpful for the future of the field, notably for understanding novel particles and fibres and for defining appropriate risk management and governance approaches.


Subject(s)
Air Pollutants/toxicity , Inhalation Exposure/adverse effects , Mineral Fibers/toxicity , Nanoparticles/toxicity , Particulate Matter/toxicity , Air Pollutants/chemistry , Humans , Nanoparticles/chemistry , Particle Size , Particulate Matter/chemistry , Risk Assessment , Risk Management , Surface Properties
12.
Nanotoxicology ; 13(4): 455-475, 2019 05.
Article in English | MEDLINE | ID: mdl-30729879

ABSTRACT

Ligands that accelerate nanoceria dissolution may greatly affect its fate and effects. This project assessed the carboxylic acid contribution to nanoceria dissolution in aqueous, acidic environments. Nanoceria has commercial and potential therapeutic and energy storage applications. It biotransforms in vivo. Citric acid stabilizes nanoceria during synthesis and in aqueous dispersions. In this study, citrate-stabilized nanoceria dispersions (∼4 nm average primary particle size) were loaded into dialysis cassettes whose membranes passed cerium salts but not nanoceria particles. The cassettes were immersed in iso-osmotic baths containing carboxylic acids at pH 4.5 and 37 °C, or other select agents. Cerium atom material balances were conducted for the cassette and bath by sampling of each chamber and cerium quantitation by ICP-MS. Samples were collected from the cassette for high-resolution transmission electron microscopy observation of nanoceria size. In carboxylic acid solutions, nanoceria dissolution increased bath cerium concentration to >96% of the cerium introduced as nanoceria into the cassette and decreased nanoceria primary particle size in the cassette. In solutions of citric, malic, and lactic acids and the ammonium ion ∼15 nm, ceria agglomerates persisted. In solutions of other carboxylic acids, some select nanoceria agglomerates grew to ∼1 micron. In carboxylic acid solutions, dissolution half-lives were 800-4000 h; in water and horseradish peroxidase they were ≥55,000 h. Extending these findings to in vivo and environmental systems, one expects acidic environments containing carboxylic acids to degrade nanoceria by dissolution; two examples would be phagolysosomes and in the plant rhizosphere.


Subject(s)
Carboxylic Acids/chemistry , Cerium/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Ligands , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Oxidation-Reduction , Particle Size , Solubility , Surface Properties
13.
Inhal Toxicol ; 30(9-10): 381-396, 2018 08.
Article in English | MEDLINE | ID: mdl-30572762

ABSTRACT

Accumulating evidence indicates the developing central nervous system (CNS) is a target of air pollution toxicity. Epidemiological reports increasingly demonstrate that exposure to the particulate matter (PM) fraction of air pollution during neurodevelopment is associated with an increased risk of neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD). These observations are supported by animal studies demonstrating prenatal exposure to concentrated ambient PM induces neuropathologies characteristic of ASD, including ventriculomegaly and aberrant corpus callosum (CC) myelination. Given the role of the CC and cerebellum in ASD etiology, this study tested whether prenatal exposure to concentrated ambient particles (CAPs) produced pathological features in offspring CC and cerebella consistent with ASD. Analysis of cerebellar myelin density revealed male-specific hypermyelination in CAPs-exposed offspring at postnatal days (PNDs) 11-15 without alteration of cerebellar area. Atomic absorption spectroscopy (AAS) revealed elevated iron (Fe) in the cerebellum of CAPs-exposed female offspring at PNDs 11-15, which connects with previously observed elevated Fe in the female CC. The presence of Fe inclusions, along with aluminum (Al) and silicon (Si) inclusions, were confirmed at nanoscale resolution in the CC along with ultrastructural myelin sheath damage. Furthermore, RNAseq and gene ontology (GO) enrichment analyses revealed cerebellar gene expression was significantly affected by sex and prenatal CAPs exposure with significant enrichment in inflammation and transmembrane transport processes that could underlie observed myelin and metal pathologies. Overall, this study highlights the ability of PM exposure to disrupt myelinogenesis and elucidates novel molecular targets of PM-induced developmental neurotoxicity.


Subject(s)
Air Pollution/adverse effects , Cerebellum/drug effects , Cerebellum/pathology , Iron/analysis , Particulate Matter/adverse effects , Prenatal Exposure Delayed Effects , Animals , Corpus Callosum/drug effects , Corpus Callosum/pathology , Female , Male , Mice , Myelin Sheath/pathology , Myelin Sheath/ultrastructure , Pregnancy
14.
Toxicol Appl Pharmacol ; 361: 81-88, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30563646

ABSTRACT

Human autopsied lung sections from a resident in the Quebec asbestos region were examined. The study utilized high resolution transmission electron microscopy, scanning transmission electron microscopy (HRTEM/STEM) with the analytical capabilities of electron energy loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) detectors. We report the first analytical ultrastructural characteristics of EMPs, detailing chemical concentration gradients inside the iron-protein coatings and lateral elemental gradients in the local tissue regions. It is shown that the EMPs are subjected to bioprocessing which involves physicochemical transformations and also an elemental transport mechanism that alters the inhaled EMP as well as the surrounding cellular matrix. At high resolution imaging the iron-rich coating around the EMP was observed to have a distinct channel-like nanostructure with some parallel aligned nanofibrils that are reminiscent of tooth enamel which consists of biomineralized nanocomposites with alternating organic/inorganic matrices.


Subject(s)
Air Pollutants, Occupational/toxicity , Inhalation Exposure/adverse effects , Lung/metabolism , Minerals/toxicity , Particulate Matter/toxicity , Air Pollutants, Occupational/metabolism , Autopsy , Humans , Lung/pathology , Lung/ultrastructure , Microscopy, Electron, Transmission , Minerals/metabolism , Nanoparticles/metabolism , Nanoparticles/toxicity , Particulate Matter/metabolism , Pleura/metabolism , Pulmonary Fibrosis/pathology , Spectrometry, X-Ray Emission
15.
Toxicol Appl Pharmacol ; 361: 50-61, 2018 12 15.
Article in English | MEDLINE | ID: mdl-29751048

ABSTRACT

Inhalation exposure to elongated cleavage fragments occurring at mineral and rock mining and crushing operations raises important questions regarding potential health effects given their resemblance to fibers with known adverse health effects like amphibole asbestos. Thus, a major goal for establishing a toxicity profile for elongate mineral particles (EMPs) is to identify and characterize a suspected hazard and characterize a risk by examining together results of hazard and exposure assessment. This will require not only knowledge about biokinetics of inhaled EMPs but also about underlying mechanisms of effects induced by retained EMPs. In vitro toxicity assays with predictive power for in vivo effects have been established as useful screening tools for toxicological characterization of particulate materials including EMPs. Important determinants of physiological/toxicological mechanisms are physico-chemical and functional properties of inhaled particulate materials. Of the physico-chemical (intrinsic) properties, size, shape and surface characteristics are well known to affect toxicological responses; functional properties include (i) solubility/dissolution rate in physiological fluid simulants in vitro and following inhalation in vivo; (ii) ROS-inducing capacity in vitro and in vivo determined as specific particle surface reactivity; (iii) bioprocessing in vivo. A key parameter for all is the dose and duration of exposure, requiring to establish exposure-dose-response relationships. Examples of studies with fibrous and non-fibrous particles are discussed to illustrate the relevancy of evaluating extrinsic and intrinsic particle properties for predicting in vivo responses of new particulate materials. This will allow hazard and risk ranking/grouping based on a comparison to toxicologically well-characterized positive and negative benchmarks. Future efforts should be directed at developing and validating new approaches using in vitro (non-animal) studies for establishing a complete risk assessment for EMPs. Further comparative in-depth analyses with analytical and ultra-high resolution technology examining bioprocessing events at target organ sites have proven highly successful to identify biotransformations in target cells at near atomic level. In the case of EMPs, such analyses can be essential to separate benign from harmful ones.


Subject(s)
Air Pollutants, Occupational/toxicity , Minerals/toxicity , Nanoparticles/toxicity , Particulate Matter/toxicity , Humans , Inhalation Exposure , Mineral Fibers/toxicity , Particle Size , Risk Assessment
16.
Toxicol Pathol ; 46(1): 47-61, 2018 01.
Article in English | MEDLINE | ID: mdl-29145781

ABSTRACT

This is the first utilization of advanced analytical electron microscopy methods, including high-resolution transmission electron microscopy, high-angle annular dark field scanning transmission electron microscopy, electron energy loss spectroscopy, and energy-dispersive X-ray spectroscopy mapping to characterize the organ-specific bioprocessing of a relatively inert nanomaterial (nanoceria). Liver and spleen samples from rats given a single intravenous infusion of nanoceria were obtained after prolonged (90 days) in vivo exposure. These advanced analytical electron microscopy methods were applied to elucidate the organ-specific cellular and subcellular fate of nanoceria after its uptake. Nanoceria is bioprocessed differently in the spleen than in the liver.


Subject(s)
Cerium/toxicity , Liver/drug effects , Microscopy, Electron/methods , Spleen/drug effects , Animals , Liver/pathology , Liver/ultrastructure , Male , Rats , Rats, Sprague-Dawley , Spleen/pathology , Spleen/ultrastructure
17.
Adv Exp Med Biol ; 947: 71-100, 2017.
Article in English | MEDLINE | ID: mdl-28168666

ABSTRACT

Adverse human health impacts due to occupational and environmental exposures to manufactured nanoparticles are of concern and pose a potential threat to the continued industrial use and integration of nanomaterials into commercial products. This chapter addresses the inter-relationship between dose and response and will elucidate on how the dynamic chemical and physical transformation and breakdown of the nanoparticles at the cellular and subcellular levels can lead to the in vivo formation of new reaction products. The dose-response relationship is complicated by the continuous physicochemical transformations in the nanoparticles induced by the dynamics of the biological system, where dose, bio-processing, and response are related in a non-linear manner. Nanoscale alterations are monitored using high-resolution imaging combined with in situ elemental analysis and emphasis is placed on the importance of the precision of characterization. The result is an in-depth understanding of the starting particles, the particle transformation in a biological environment, and the physiological response.


Subject(s)
Nanoparticles/adverse effects , Nanoparticles/chemistry , Environment , Environmental Exposure/adverse effects , Humans , Nanostructures/adverse effects , Nanostructures/chemistry
18.
Chempluschem ; 79(8): 1083-1088, 2014 08.
Article in English | MEDLINE | ID: mdl-26322251

ABSTRACT

The cytotoxicity of ceria ultimately lies in its electronic structure, which is defined by the crystal structure, composition, and size. Despite previous studies focused on ceria uptake, distribution, biopersistance, and cellular effects, little is known about its chemical and structural stability and solubility once sequestered inside the liver. Mechanisms will be presented that elucidate the in vivo transformation in the liver. In vivo processed ceria reveals a particle-size effect towards the formation of ultrafines, which represent a second generation of ceria. A measurable change in the valence reduction of the second-generation ceria can be linked to an increased free-radical scavenging potential. The in vivo processing of the ceria nanoparticles in the liver occurs in temporal relation to the brain cellular and protein clearance responses that stem from the ceria uptake. This information is critical to establish a possible link between cellular processes and the observed in vivo transformation of ceria. The temporal linkage between the reversal of the pro-oxidant effect (brain) and ceria transformation (liver) suggests a cause-effect relationship.

19.
Nanotoxicology ; 8 Suppl 1: 155-66, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24350865

ABSTRACT

Ceria engineered nanomaterials (ENMs) have very promising commercial and therapeutic applications. Few reports address the effects of nanoceria in intact mammals, let alone long term exposure. This knowledge is essential to understand potential therapeutic applications of nanoceria in relation to its hazard assessment. The current study elucidates oxidative stress responses in the rat hippocampus 1 and 20 h, and 1, 7, 30 and 90 days following a single systemic infusion of 30 nm nanoceria. The results are incorporated into a previously described hierarchical oxidative stress (HOS) model. During the 1-20 h period, increases of the GSSG: GSH ratio and cytoprotective phase-II antioxidants were observed. During the 1-7 d period, cytoprotective phase-II antioxidants activities were inhibited with concomitant elevation of protein carbonyl (PC), 3-nitrotyrosine (3NT), heme oxygenase-1 (HO-1), cytokine IL-1ß and the autophagy marker LC-3AB. At 30 day post ceria infusion, oxidative stress had its major impact. Phase-II enzyme activities were inhibited; concurrently PC, 3NT, HO-1 and Hsp70 levels were elevated along with augmentation of IL-1ß, pro-apoptotic pro-caspase-3 and LC-3AB levels. This progress of escalating oxidative stress was reversed at 90 days when phase-II enzyme levels and activities were restored to normal levels, PC and 3NT levels were reduced to baseline, cytokine and pro-caspase-3 levels were suppressed, and cellular redox balance was restored in the rat hippocampus. This study demonstrates that a single administration of nanoceria induced oxidative stress that escalates to 30 days then terminates, in spite of the previously reported continued presence of nanoceria in peripheral organs. These results for the first time confirm in vivo the HOS model of response to ENM previously posited based on in vitro studies and extends this prior hierarchical oxidative stress model that described three tiers to a 4th tier, characterized by resolution of the oxidative stress and return to normal conditions.


Subject(s)
Cerium/toxicity , Hippocampus/physiology , Nanoparticles/toxicity , Oxidative Stress , Animals , Hippocampus/drug effects , Hippocampus/metabolism , Microscopy, Electron, Transmission , Rats
20.
Toxicol Pathol ; 42(6): 984-96, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24178579

ABSTRACT

Understanding the long-term effects and possible toxicity of nanoceria, a widely utilized commercial metal oxide, is of particular importance as it is poised for development as a therapeutic agent based on its autocatalytic redox behavior. We show here evidence of acute and subacute adverse hepatic responses, after a single infusion of an aqueous dispersion of 85 mg/kg, 30 nm nanoceria into Sprague Dawley rats. Light and electron microscopic evidence of avid uptake of nanoceria by Kupffer cells was detected as early as 1 hr after infusion. Biopersistent nanoceria stimulated cluster of differentiation 3(+) lymphocyte proliferation that intermingled with nanoceria-containing Kupffer cells to form granulomata that were observed between days 30 and 90. Ultrastructural tracking of ceria nanoparticles revealed aggregated nanoceria in phagolysosomes. An increased formation of small nanoceria over time observed in the latter suggests possible dissolution and precipitation of nanoceria. However, the pathway for nanoceria metabolism/secretion remains unclear. Although frank hepatic necrosis was not observed, the retention of nanoceria increased hepatic apoptosis acutely, this persisted to day 90. These findings, together with our earlier reports of 5-nm ceria-induced liver toxicity, provide additional guidance for nanoceria development as a therapeutic agent and for its risk assessment.


Subject(s)
Cerium/administration & dosage , Cerium/toxicity , Liver/drug effects , Liver/pathology , Animals , Apoptosis/drug effects , CD3 Complex , Cell Proliferation/drug effects , Immunohistochemistry , In Situ Nick-End Labeling , Kupffer Cells/chemistry , Kupffer Cells/drug effects , Liver/cytology , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...