Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-516398

ABSTRACT

COVID-19 placentitis, a rare complication of maternal SARS-CoV-2 infection, only shows detectable virus in the placenta of a subset of cases. We provide a deep multi-omic spatial characterisation of placentitis from obstetrically complicated maternal COVID-19 infection. We found that SARS-CoV-2 infected placentas have a distinct transcriptional and immunopathological signature. This signature overlaps with virus-negative cases supporting a common viral aetiology. An inverse correlation between viral load and disease duration suggests viral clearance over time. Quantitative spatial analyses revealed a unique microenvironment surrounding virus-infected trophoblasts characterised by PDL1-expressing macrophages, T-cell exclusion, and interferon blunting. In contrast to uninfected mothers, ACE2 was localised to the maternal side of the placental trophoblast layer of almost all mothers with placental SARS-CoV-2 infection, which may explain variable susceptibility to placental infection. Our results demonstrate a pivotal role for direct placental SARS-CoV-2 infection in driving the unique immunopathology of COVID-19 placentitis. Graphical Abstract O_FIG_DISPLAY_L [Figure 1] M_FIG_DISPLAY C_FIG_DISPLAY

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21255890

ABSTRACT

ObjectiveThrombotic complications and vasculopathy have been extensively associated with severe COVID-19 infection, however the mechanisms by which endotheliitis is induced remain poorly understood. Here we investigate vascular permeability in the context of SARS-CoV-2-mediated endotheliitis in patient samples and a vascular organoid model. Methods and ResultsWe report the presence of the Spike glycoprotein in pericytes associated with pericyte activation and increased endothelial permeability in post-mortem COVID-19 lung autopsies. A pronounced decrease in the expression of the adhesion molecule VE-cadherin is observed in patients with thrombotic complications. Interestingly, fibrin-rich thrombi did not contain platelets, did not colocalize with tissue factor and have heterogenous levels of Von Willebrand factor, suggesting a biomarker-guided therapy might be required to target thrombosis in severe patients. Using a 3D vascular organoid model, we observe that ACE2 is primarily expressed in pericytes adjacent to vascular networks, consistent with patient data, indicating a preferential uptake of the S glycoprotein by these cells. Exposure of vascular organoids to SARS-CoV-2 or its antigens, recombinant trimeric Spike glycoprotein and Nucleocapsid protein, reduced endothelial cell and pericyte viability as well as CD144 expression with no additive effect upon endothelial activation via IL-1{beta}. ConclusionsOur data suggest that pericyte uptake of SARS-CoV-2 or Spike glycoprotein contributes to vasculopathy by altering endothelial permeability increasing the risk of thrombotic complications.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21255275

ABSTRACT

SARS-CoV-2 infection is generally mild or asymptomatic in children but the biological basis for this is unclear. We studied the profile of antibody and cellular immunity in children aged 3-11 years in comparison with adults. Antibody responses against spike and receptor binding domain (RBD) were high in children and seroconversion boosted antibody responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain. Seroneutralisation assays against alpha, beta and delta SARS-CoV-2 variants demonstrated comparable neutralising activity between children and adults. T cell responses against spike were >2-fold higher in children compared to adults and displayed a TH1 cytokine profile. SARS-CoV-2 spike-specific T cells were also detected in many seronegative children, revealing pre-existing responses that were cross-reactive with seasonal Alpha and Beta-coronaviruses. Importantly, all children retained high antibody titres and cellular responses at 6 months after infection whilst relative antibody waning was seen in adults. Spike-specific responses in children also remained broadly stable beyond 12 months. Children thus distinctly generate robust, cross-reactive and sustained immune responses after SARS-CoV-2 infection with focussed specificity against spike protein. These observations demonstrate novel features of SARS-CoV-2-specific immune responses in children and may provide insight into their relative clinical protection. Furthermore, this information will help to guide the introduction of vaccination regimens in the paediatric population.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-438219

ABSTRACT

Inflammasomes are cytosolic innate immune sensors of pathogen infection and cellular damage that induce caspase-1 mediated inflammation upon activation. Although inflammation is protective, uncontrolled excessive inflammation can cause inflammatory diseases and can be detrimental, such as in COVID-19. However, the underlying mechanisms that control inflammasome activation are incompletely understood. Here we report that the leucine rich repeat (LRR) protein Ribonuclease inhibitor (RNH1), which shares homology with LRRs of NLRP proteins, attenuates inflammasome activation. Deletion of RNH1 in macrophages increases IL-1{beta} production and caspase-1 activation for inflammasome stimuli. Mechanistically, RNH1 decreases pro-IL-1{beta} expression and induces proteasome-mediated caspase-1 degradation. Corroborating this, mouse models of monosodium urate (MSU)-induced peritonitis and LPS-induced endotoxemia, which are dependent on caspase-1, respectively show increased neutrophil infiltration and lethality in Rnh1-/- mice compared to WT mice. Furthermore, RNH1 protein levels are negatively correlated with inflammation and disease severity in hospitalized COVID-19 patients. We propose that RNH1 is a new inflammasome regulator with relevance to COVID-19 severity.

SELECTION OF CITATIONS
SEARCH DETAIL
...