Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Test Anal ; 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225724

ABSTRACT

A dopamine reuptake inhibitor is a type of medication or substance that works by blocking the reuptake of dopamine in the brain. Dopamine reuptake inhibitors offer multiple effects, including increased alertness, improved mood, and therapeutic potential for conditions like depression, ADHD, and Parkinson's disease. HDMP-28, or methylnaphthidate, is a potent synthetic stimulant from the phenyltropane class. It surpasses methylphenidate in both dopamine reuptake inhibition and half-life. As a dopamine reuptake inhibitor, it boosts dopamine levels by hindering reuptake into nerve cells, resulting in heightened stimulation and increased energy. In order to comprehensively address both the tangible and potential repercussions of the unauthorized utilization of the aforementioned substance in sports, it is imperative to establish analytical methodologies for the identification of the parent drug and its primary metabolites. Additionally, a comprehensive analysis of the metabolic characteristics of HDMP-28 in both human and animal subjects has yet to be published. This study explores the metabolic conversion of HDMP-28 mediated by equine liver microsomes and Cunninghamella elegans. An extraction and detection method was developed, optimized, and validated for doping assessment in equine urine and plasma. Liquid chromatography-high-resolution mass spectrometry was employed to determine metabolite structures. The study identified 31 (22 phase I and 9 phase II) metabolites of HDMP-28, including hydroxylated, hydrogenated, and hydrolyzed analogs. Glucuronic acid-conjugated metabolites were also detected. This manuscript describes metabolites based on the in vitro studies, which might not be the same in vivo. These findings aid in the detection and understanding of the illicit use of HDMP-28 in equestrian sports.

2.
Drug Test Anal ; 15(7): 757-768, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36922727

ABSTRACT

Nonsteroidal selective androgen receptor modulators (SARMs) are a novel class of compounds that have not yet been clinically approved; however, they appear to have a better anabolic/androgenic ratio than steroids and cause slighter side effects. Sports drug testing laboratories are required to maintain continuously updated doping control analytical methods in light of the widespread misuse of SARMs in elite and amateur sports. This paper describes the metabolic conversion of SARM GSK2881078 in thoroughbred horses following oral administration and in vitro with equine liver microsomes. A liquid chromatography-high-resolution mass spectrometry method was used to postulate the plausible structures of the detected metabolites. A total of five (M1-M5) in vivo metabolites and six (M1-M6) in vitro metabolites were detected under experimental conditions. Phase I metabolites mainly result from hydroxylation. Methoxylated and side-chain dissociated metabolites were also detected. Neither sulfonic acid nor glucuronic acid conjugated metabolites were observed in this study. Data reported here could aid in the detection of nonsteroidal SARM GSK2881078 and reveal its illicit use in competitive sports.


Subject(s)
Anabolic Agents , Doping in Sports , Horses , Animals , Microsomes, Liver/metabolism , Receptors, Androgen/metabolism , Androgens/metabolism , Substance Abuse Detection/methods , Androgen Antagonists/metabolism , Anabolic Agents/metabolism
3.
Rapid Commun Mass Spectrom ; 37(9): e9491, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36758220

ABSTRACT

RATIONALE: Since 2010, there has been an increasing number of adverse analytical findings related to selective androgen receptor modulators (SARMs) in competitive sports. It emphasizes the importance of comprehensive doping control analytical procedures that are capable of detecting SARM misuse. METHODS: In this study, it is described how LY2452473, a SARM, was metabolized in thoroughbred horses after a single-dose oral administration and in vitro with equine liver microsome preparations. An investigation of the metabolism of LY2452473 in horses' urine, plasma, and hair matrices was carried out during the study. The plausible structures of the detected metabolites were postulated using high-performance liquid chromatography-high resolution mass spectrometry. RESULTS: Under the experimental conditions 15 metabolites (12 phase I and three conjugates of phase I) were detected (M1-M15). The major phase I metabolites identified were formed by hydroxylation. Side-chain dissociated and methylated metabolites were also detected. In phase II, the glucuronic acid and sulfonic acid conjugates of hydroxy LY2452473 were detected as the major metabolites. In vitro analysis has confirmed the presence of all metabolites found in vivo except for the methylated analogs M11 and M12. A peak concentration of LY2452473 (0.5 pg/mg) in proximal hair segments was achieved 4 weeks after administration, according to hair analysis. CONCLUSIONS: Data obtained will aid in identifying LY2452473 and related substances faster. Furthermore, the results will assist in checking for the illegal use of these substances in competitive sports.


Subject(s)
Doping in Sports , Horses , Animals , Receptors, Androgen/metabolism , Androgens , Mass Spectrometry/methods , Substance Abuse Detection/veterinary , Substance Abuse Detection/methods
4.
Rapid Commun Mass Spectrom ; 37(3): e9430, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36382989

ABSTRACT

RATIONALE: According to previous research, aminorex is the major metabolite of levamisole; however, in the screening of levamisole-positive racehorse urine and plasma samples, aminorex could only be detected in trace amounts or not at all. In forensic laboratories, hydroxy levamisole and its phase II conjugates make it easier to confirm levamisole misuse and to differentiate between the abuse of levamisole and aminorex. This study aimed to identify the major levamisole metabolites that can be detected along with the parent drug. METHODS: The study describes levamisole and its metabolites in thoroughbred horses following oral administration and in vitro with equine liver microsomes. The plausible structures of the detected metabolites were postulated using liquid chromatography combined with high-resolution mass spectrometry. RESULTS: Under the experimental conditions 26 metabolites (17 phase I, 2 phase II, and 7 conjugates of phase I metabolites) were detected (M1-M26). The major phase I metabolites identified were formed by hydroxylation. In phase II, the glucuronic acid conjugates of levamisole and hydroxy levamisole were detected as the major metabolites. In plasma, the parent drug and major metabolites are detectable for up to eight days, while in urine, they are detectable for up to twenty days. Levamisole levels rapidly increased at 45 min following administration, then declined gradually until detectable levels were reached approximately 8 days after administration, according to a pharmacokinetics study. CONCLUSIONS: A prolonged elimination profile and relatively high concentration of hydroxy metabolites suggest that the detection of hydroxy metabolites is imperative for investigating levamisole doping in horses.


Subject(s)
Doping in Sports , Levamisole , Horses , Animals , Levamisole/urine , Aminorex/urine , Mass Spectrometry , Microsomes, Liver/metabolism , Administration, Oral
SELECTION OF CITATIONS
SEARCH DETAIL
...