Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
J Biol Chem ; 299(12): 105471, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979918

ABSTRACT

Recently, we demonstrated that agonist-stimulated Ca2+ signaling involving IP3 receptors modulates ER export rates through activation of the penta-EF Hand proteins apoptosis-linked gene-2 (ALG-2) and peflin. It is unknown, however, whether IP3Rs and penta-EF proteins regulate ER export rates at steady state. Here we tested this idea in normal rat kidney epithelial cells by manipulation of IP3R isoform expression. Under standard growth conditions, spontaneous cytosolic Ca2+ oscillations occurred simultaneously in successive groups of contiguous cells, generating intercellular Ca2+ waves that moved across the monolayer periodically. Depletion of IP3R-3, typically the least promiscuous IP3R isoform, caused increased cell participation in intercellular Ca2+ waves in unstimulated cells. The increased spontaneous signaling was sufficient to cause increased ALG-2 and COPII coat subunit Sec31A and decreased peflin localization at ER exit sites, resulting in increased ER-to-Golgi transport of the COPII client cargo VSV-G. The elevated ER-to-Golgi transport caused greater concentration of VSV-G at ER exit sites and had reciprocal effects on transport of VSV-G and a bulk-flow cargo, though both cargos equally required Sec31A. Inactivation of client cargo sorting using 4-phenylbutyrate had opposing reciprocal effects on client and bulk-flow cargo and neutralized any effect of ALG-2 activation on transport. This work extends our knowledge of ALG-2 mechanisms and indicates that in normal rat kidney cells, IP3R isoforms regulate homeostatic Ca2+ signaling that helps determine the basal secretion rate and stringency of COPII-dependent cargo sorting.


Subject(s)
COP-Coated Vesicles , Calcium , EF Hand Motifs , Inositol 1,4,5-Trisphosphate Receptors , Animals , Rats , Calcium/metabolism , Calcium Signaling , Calcium-Binding Proteins/metabolism , COP-Coated Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Epithelial Cells/metabolism , Golgi Apparatus/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Kidney/cytology , Protein Isoforms/metabolism , Protein Transport
2.
Cell Calcium ; 113: 102765, 2023 07.
Article in English | MEDLINE | ID: mdl-37290367

ABSTRACT

The mitochondrial inner boundary membrane harbors a protein called MICU1, which is sensitive to Ca2+ and binds to the MICOS components Mic60 and CHCHD2. Changes in the mitochondrial cristae junction structure and organization in MICU1-/- cells lead to increased cytochrome c release, membrane potential rearrangement, and changes in mitochondrial Ca2+ uptake dynamics. These findings shed new light on the multifaceted role of MICU1, highlighting its involvement not only as an interaction partner and regulator of the MCU complex but also as a crucial determinant of mitochondrial ultrastructure and, thus, an essential player in processes initiating apoptosis.


Subject(s)
Cytochromes c , Mitochondrial Membrane Transport Proteins , Cytochromes c/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Calcium-Binding Proteins/metabolism
3.
Clin Genet ; 104(4): 491-496, 2023 10.
Article in English | MEDLINE | ID: mdl-37270786

ABSTRACT

Restrictive dermopathy (RD) is a lethal condition caused by biallelic loss-of-function mutations in ZMPSTE24, whereas mutations preserving residual enzymatic activity of the ZMPSTE24 protein lead to the milder mandibuloacral dysplasia with type B lipodystrophy (MADB) phenotype. Remarkably, we identified a homozygous, presumably loss-of-function mutation in ZMPSTE24 [c.28_29insA, p.(Leu10Tyrfs*37)] in two consanguineous Pakistani families segregating MADB. To clarify how lethal consequences are prevented in affected individuals, functional analysis was performed. Expression experiments supported utilization of two alternative translation initiation sites, preventing complete loss of protein function consistent with the relatively mild phenotypic outcome in affected patients. One of these alternative start codons is newly formed at the insertion site. Our findings indicate that the creation of new potential start codons through N-terminal mutations in other disease-associated genes should generally be taken into consideration in the variant interpretation process.


Subject(s)
Frameshift Mutation , Metalloendopeptidases , Humans , Frameshift Mutation/genetics , Codon, Initiator/genetics , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Mutation , Codon , Membrane Proteins/genetics
4.
Cell Calcium ; 112: 102736, 2023 06.
Article in English | MEDLINE | ID: mdl-37031662

ABSTRACT

Mitochondrial uncoupling proteins UCP1 and UCP2 have a structural homology of app. 60%. They execute their mitochondria uncoupling function through different molecular mechanisms. Non-shivering thermogenesis by UCP1 is mediated through a transmembrane dissipation of the proton motive force to create heat during sympathetic stimulation. UCP2, on the other hand, modulates through the interaction with methylated MICU1 the permeability of the cristae junction, which acts as an isolator for the cristae-located mitochondrial membrane potential. In this mini-review, we discuss and compare the recently described molecular mechanism of UCP1 in brown adipose tissue and UCP2 in aged and cancer non-excitable cells that contribute to mitochondrial uncoupling, and the synergistic effects of both UCPs with the mitochondrial Ca2+ uptake machinery.


Subject(s)
Ion Channels , Membrane Proteins , Mitochondrial Uncoupling Proteins/metabolism , Membrane Proteins/metabolism , Ion Channels/metabolism , Mitochondrial Proteins/metabolism , Uncoupling Protein 2/metabolism , Mitochondria/metabolism
5.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36834530

ABSTRACT

Monoglyceride lipase (MGL) hydrolyzes monoacylglycerols (MG) to glycerol and one fatty acid. Among the various MG species, MGL also degrades 2-arachidonoylglycerol, the most abundant endocannabinoid and potent activator of the cannabinoid receptors 1 and 2. We investigated the consequences of MGL deficiency on platelet function using systemic (Mgl-/-) and platelet-specific Mgl-deficient (platMgl-/-) mice. Despite comparable platelet morphology, loss of MGL was associated with decreased platelet aggregation and reduced response to collagen activation. This was reflected by reduced thrombus formation in vitro, accompanied by a longer bleeding time and a higher blood volume loss. Occlusion time after FeCl3-induced injury was markedly reduced in Mgl-/- mice, which is consistent with contraction of large aggregates and fewer small aggregates in vitro. The absence of any functional changes in platelets from platMgl-/- mice is in accordance with lipid degradation products or other molecules in the circulation, rather than platelet-specific effects, being responsible for the observed alterations in Mgl-/- mice. We conclude that genetic deletion of MGL is associated with altered thrombogenesis.


Subject(s)
Monoacylglycerol Lipases , Monoglycerides , Animals , Mice , Endocannabinoids/metabolism , Lipolysis , Mice, Inbred C57BL , Mice, Knockout , Monoacylglycerol Lipases/genetics
6.
Nephrol Dial Transplant ; 38(3): 757-763, 2023 02 28.
Article in English | MEDLINE | ID: mdl-35700151

ABSTRACT

BACKGROUND: Hyperkalemia is a common complication in cardiorenal patients treated with agents interfering with renal potassium (K+) excretion. It frequently leads to discontinuation of potentially life-saving medication, which has increased the importance of K+ monitoring. Non-invasive means to detect hyperkalemia are currently unavailable, but would be of potential use for therapy guidance. The aim of the present study was to assess the analytical performance of genetically encoded potassium-ion indicators (GEPIIs) in measuring salivary [K+] ([K+]Saliva) and to determine whether changes of [K+]Saliva depict those of [K+]Plasma. METHODS: We conducted this proof-of-concept study: saliva samples from 20 healthy volunteers as well as plasma and saliva from 29 patients on hemodialysis (HD) before and after three consecutive HD treatments were collected. We compared [K+]Saliva as assessed by the gold standard ion-selective electrode (ISE) with GEPII measurements. RESULTS: The Bland-Altmann analysis showed a strong agreement (bias 0.71; 95% limits of agreement from -2.79 to 4.40) between GEPII and ISE. Before treatment, patients on HD showed significantly higher [K+]Saliva compared with healthy controls [median 37.7 (30.85; 48.46) vs 23.8 (21.63; 25.23) mmol/L; P < .05]. [K+]Plasma in HD patients decreased significantly after dialysis. This was paralleled by a significant decrease in [K+]Saliva, and both parameters increased until the subsequent HD session. Despite similar kinetics, we found weak or no correlation between [K+]Plasma and [K+]Saliva. CONCLUSION: GEPIIs have shown an excellent performance in determining [K+]Saliva. [K+]Plasma and [K+]Saliva exhibited similar kinetics. To determine whether saliva could be a suitable sample type to monitor [K+]Plasma, further testing in future studies are required.


Subject(s)
Hyperkalemia , Potassium , Humans , Renal Dialysis , Kidney , Plasma/chemistry
7.
Curr Top Membr ; 90: 13-35, 2022.
Article in English | MEDLINE | ID: mdl-36368872

ABSTRACT

Mitochondria actively contribute to cellular Ca2+ homeostasis. The molecular mechanisms of mitochondrial Ca2+ uptake and release are well characterized and are attributed to the multi-protein assembly of the mitochondrial Ca2+ uniporter complex (MCUC) and the mitochondrial sodium-calcium exchanger (NCLX), respectively. Hence, Ca2+ transfer from the endoplasmic reticulum (ER) and store-operated Ca2+ entry (SOCE) into the mitochondrial matrix has been quantitatively visualized on the subcellular level using targeted fluorescent biosensors. However, a correlation between the amplitude of cytosolic Ca2+ elevation with that in the mitochondrial matrix has not been investigated in detail so far. In the present study, we combined the Ca2+-mobilizing agonist histamine with the H1-receptor antagonist risperidone to establish a well-tunable experimental approach allowing the correlation between low, slow, high, and fast cytosolic and mitochondrial Ca2+ signals in response to inositol 1,4,5-trisphosphate (IP3)-triggered ER Ca2+ release. Our present data confirm a defined threshold in cytosolic Ca2+, which is necessary for the activation of mitochondrial Ca2+ uptake. Moreover, our data support the hypothesis of different modes of mitochondrial Ca2+ uptake depending on the source of the ion (i.e., ER vs SOCE).


Subject(s)
Calcium Signaling , Risperidone , Risperidone/pharmacology , Risperidone/metabolism , Calcium/metabolism , Cytosol/metabolism , Mitochondria/metabolism
8.
Biosensors (Basel) ; 12(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36291039

ABSTRACT

Cellular iron supply is required for various biochemical processes. Measuring bioavailable iron in cells aids in obtaining a better understanding of its biochemical activities but is technically challenging. Existing techniques have several constraints that make precise localization difficult, and the lack of a functional readout makes it unclear whether the tested labile iron is available for metalloproteins. Here, we use geNOps; a ferrous iron-dependent genetically encoded fluorescent nitric oxide (NO) biosensor, to measure available iron in cellular locales. We exploited the nitrosylation-dependent fluorescence quenching of geNOps as a direct readout for cellular iron absorption, distribution, and availability. Our findings show that, in addition to ferrous iron salts, the complex of iron (III) with N,N'-bis (2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) can activate the iron (II)-dependent NO probe within intact cells. Cell treatment for only 20 min with iron sucrose was also sufficient to activate the biosensor in the cytosol and mitochondria significantly; however, ferric carboxymaltose failed to functionalize the probe, even after 2 h of cell treatment. Our findings show that the geNOps approach detects available iron (II) in cultured cells and can be applied to assay functional iron (II) at the (sub)cellular level.


Subject(s)
Biosensing Techniques , Metalloproteins , Iron , Nitric Oxide , Edetic Acid , Ferric Oxide, Saccharated , Salts , Ethylenediamines
9.
Biomolecules ; 12(10)2022 09 28.
Article in English | MEDLINE | ID: mdl-36291596

ABSTRACT

The mitochondrial voltage-dependent anion channel-1 (VDAC1) protein functions in a variety of mitochondria-linked physiological and pathological processes, including metabolism and cell signaling, as well as in mitochondria-mediated apoptosis. VDAC1 interacts with about 150 proteins to regulate the integration of mitochondrial functions with other cellular activities. Recently, we developed VDAC1-based peptides that have multiple effects on cancer cells and tumors including apoptosis induction. Here, we designed several cell-penetrating VDAC1 N-terminal-derived peptides with the goal of identifying the shortest peptide with improved cellular stability and activity. We identified the D-Δ(1-18)N-Ter-Antp comprising the VDAC1 N-terminal region (19-26 amino acids) fused to the Antp, a cell-penetrating peptide. We demonstrated that this peptide induced apoptosis, autophagy, senescence, cell volume enlargement, and the refusion of divided daughter cells into a single cell, it was responsible for reorganization of actin and tubulin filaments, and increased cell adhesion. In addition, the peptide induced alterations in the expression of proteins associated with cell metabolism, signaling, and division, such as enhancing the expression of nuclear factor kappa B and decreasing the expression of the nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha. These cellular effects may result from the peptide interfering with VDAC1 interaction with its interacting proteins, thereby blocking multiple mitochondrial/VDAC1 pathways associated with cell functions. The results of this study further support the role of VDAC1 as a mitochondrial gatekeeper protein in controlling a variety of cell functions via interaction with associated proteins.


Subject(s)
Cell-Penetrating Peptides , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/metabolism , NF-kappa B/metabolism , Tubulin/metabolism , Actins/metabolism , Voltage-Dependent Anion Channel 1/metabolism , Apoptosis , Amino Acids/pharmacology
10.
Front Cell Dev Biol ; 10: 918691, 2022.
Article in English | MEDLINE | ID: mdl-36158213

ABSTRACT

Endoplasmic reticulum (ER) functions critically depend on a suitable ATP supply to fuel ER chaperons and protein trafficking. A disruption of the ability of the ER to traffic and fold proteins leads to ER stress and the unfolded protein response (UPR). Using structured illumination super-resolution microscopy, we revealed increased stability and lifetime of mitochondrial associated ER membranes (MAM) during ER stress. The consequent increase of basal mitochondrial Ca2+ leads to increased TCA cycle activity and enhanced mitochondrial membrane potential, OXPHOS, and ATP generation during ER stress. Subsequently, OXPHOS derived ATP trafficking towards the ER was increased. We found that the increased lifetime and stability of MAMs during ER stress depended on the mitochondrial fusion protein Mitofusin2 (MFN2). Knockdown of MFN2 blunted mitochondrial Ca2+ effect during ER stress, switched mitochondrial F1FO-ATPase activity into reverse mode, and strongly reduced the ATP supply for the ER during ER stress. These findings suggest a critical role of MFN2-dependent MAM stability and lifetime during ER stress to compensate UPR by strengthening ER ATP supply by the mitochondria.

12.
Cell Mol Life Sci ; 79(7): 391, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35776213

ABSTRACT

The RNA-binding protein ALYREF (THOC4) is involved in transcriptional regulation and nuclear mRNA export, though its role and molecular mode of action in breast carcinogenesis are completely unknown. Here, we identified high ALYREF expression as a factor for poor survival in breast cancer patients. ALYREF significantly influenced cellular growth, apoptosis and mitochondrial energy metabolism in breast cancer cells as well as breast tumorigenesis in orthotopic mouse models. Transcriptional profiling, phenocopy and rescue experiments identified the short isoform of the lncRNA NEAT1 as a molecular trigger for ALYREF effects in breast cancer. Mechanistically, we found that ALYREF binds to the NEAT1 promoter region to enhance the global NEAT1 transcriptional activity. Importantly, by stabilizing CPSF6, a protein that selectively activates the post-transcriptional generation of the short isoform of NEAT1, as well as by direct binding and stabilization of the short isoform of NEAT1, ALYREF selectively fine-tunes the expression of the short NEAT1 isoform. Overall, our study describes ALYREF as a novel factor contributing to breast carcinogenesis and identifies novel molecular mechanisms of regulation the two isoforms of NEAT1.


Subject(s)
Breast Neoplasms , Nuclear Proteins , RNA, Long Noncoding , RNA-Binding Proteins , Transcription Factors , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Transformation, Neoplastic , Female , Humans , Mice , Nuclear Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Transport , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism
13.
Commun Biol ; 5(1): 649, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35778442

ABSTRACT

Mitochondrial ultrastructure represents a pinnacle of form and function, with the inner mitochondrial membrane (IMM) forming isolated pockets of cristae membrane (CM), separated from the inner-boundary membrane (IBM) by cristae junctions (CJ). Applying structured illumination and electron microscopy, a novel and fundamental function of MICU1 in mediating Ca2+ control over spatial membrane potential gradients (SMPGs) between CM and IMS was identified. We unveiled alterations of SMPGs by transient CJ openings when Ca2+ binds to MICU1 resulting in spatial cristae depolarization. This Ca2+/MICU1-mediated plasticity of the CJ further provides the mechanistic bedrock of the biphasic mitochondrial Ca2+ uptake kinetics via the mitochondrial Ca2+ uniporter (MCU) during intracellular Ca2+ release: Initially, high Ca2+ opens CJ via Ca2+/MICU1 and allows instant Ca2+ uptake across the CM through constantly active MCU. Second, MCU disseminates into the IBM, thus establishing Ca2+ uptake across the IBM that circumvents the CM. Under the condition of MICU1 methylation by PRMT1 in aging or cancer, UCP2 that binds to methylated MICU1 destabilizes CJ, disrupts SMPGs, and facilitates fast Ca2+ uptake via the CM.


Subject(s)
Mitochondria , Mitochondrial Membranes , Biological Transport , Membrane Potentials
15.
Biomolecules ; 12(6)2022 05 30.
Article in English | MEDLINE | ID: mdl-35740887

ABSTRACT

Sigma-1 receptor (S1R) is an important endoplasmic reticulum chaperone with various functions in health and disease. The purpose of the current work was to elucidate the involvement of S1R in cancer energy metabolism under its basal, activated, and inactivated states. For this, two cancer cell lines that differentially express S1R were treated with S1R agonist, (+)-SKF10047, and antagonist, BD1047. The effects of the agonist and antagonist on cancer energy metabolism were studied using single-cell fluorescence microscopy analysis of real-time ion and metabolite fluxes. Our experiments revealed that S1R activation by agonist increases mitochondrial bioenergetics of cancer cells while decreasing their reliance on aerobic glycolysis. S1R antagonist did not have a major impact on mitochondrial bioenergetics of tested cell lines but increased aerobic glycolysis of S1R expressing cancer cell line. Our findings suggest that S1R plays an important role in cancer energy metabolism and that S1R ligands can serve as tools to modulate it.


Subject(s)
Neoplasms , Receptors, sigma , Endoplasmic Reticulum/metabolism , Energy Metabolism , Ligands , Neoplasms/drug therapy , Neoplasms/metabolism , Receptors, sigma/agonists , Receptors, sigma/metabolism , Sigma-1 Receptor
16.
Cells ; 11(7)2022 03 22.
Article in English | MEDLINE | ID: mdl-35406635

ABSTRACT

Systemic inflammation induces alterations in the finely tuned micromilieu of the brain that is continuously monitored by microglia. In the CNS, these changes include increased synthesis of the bioactive lipid lysophosphatidic acid (LPA), a ligand for the six members of the LPA receptor family (LPA1-6). In mouse and human microglia, LPA5 belongs to a set of receptors that cooperatively detect danger signals in the brain. Engagement of LPA5 by LPA polarizes microglia toward a pro-inflammatory phenotype. Therefore, we studied the consequences of global LPA5 knockout (-/-) on neuroinflammatory parameters in a mouse endotoxemia model and in primary microglia exposed to LPA in vitro. A single endotoxin injection (5 mg/kg body weight) resulted in lower circulating concentrations of TNFα and IL-1ß and significantly reduced gene expression of IL-6 and CXCL2 in the brain of LPS-injected LPA5-/- mice. LPA5 deficiency improved sickness behavior and energy deficits produced by low-dose (1.4 mg LPS/kg body weight) chronic LPS treatment. LPA5-/- microglia secreted lower concentrations of pro-inflammatory cyto-/chemokines in response to LPA and showed higher maximal mitochondrial respiration under basal and LPA-activated conditions, further accompanied by lower lactate release, decreased NADPH and GSH synthesis, and inhibited NO production. Collectively, our data suggest that LPA5 promotes neuroinflammation by transmiting pro-inflammatory signals during endotoxemia through microglial activation induced by LPA.


Subject(s)
Endotoxemia , Receptors, Lysophosphatidic Acid , Animals , Body Weight , Disease Models, Animal , Endotoxemia/metabolism , Inflammation/metabolism , Lipopolysaccharides , Lysophospholipids , Mice , Mice, Knockout , Microglia/metabolism , Receptors, Lysophosphatidic Acid/genetics
17.
Cells ; 11(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-35269472

ABSTRACT

According to genome-wide RNA sequencing data from human and mouse platelets, adipose triglyceride lipase (ATGL), the main lipase catalyzing triglyceride (TG) hydrolysis in cytosolic lipid droplets (LD) at neutral pH, is expressed in platelets. Currently, it is elusive to whether common lipolytic enzymes are involved in the degradation of TG in platelets. Since the consequences of ATGL deficiency in platelets are unknown, we used whole-body and platelet-specific (plat)Atgl-deficient (-/-) mice to investigate the loss of ATGL on platelet function. Our results showed that platelets accumulate only a few LD due to lack of ATGL. Stimulation with platelet-activating agonists resulted in comparable platelet activation in Atgl-/-, platAtgl-/-, and wild-type mice. Measurement of mitochondrial respiration revealed a decreased oxygen consumption rate in platelets from Atgl-/- but not from platAtgl-/- mice. Of note, global loss of ATGL was associated with an anti-thrombogenic phenotype, which was evident by reduced thrombus formation in collagen-coated channels in vitro despite unchanged bleeding and occlusion times in vivo. We conclude that genetic deletion of ATGL affects collagen-induced thrombosis without pathological bleeding and platelet activation.


Subject(s)
Acyltransferases/metabolism , Lipase , Thrombosis , Animals , Lipase/metabolism , Mice , Mice, Knockout , Platelet Activation , Triglycerides/metabolism
18.
Commun Biol ; 5(1): 76, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35058562

ABSTRACT

In contrast to long-term metabolic reprogramming, metabolic rewiring represents an instant and reversible cellular adaptation to physiological or pathological stress. Ca2+ signals of distinct spatio-temporal patterns control a plethora of signaling processes and can determine basal cellular metabolic setting, however, Ca2+ signals that define metabolic rewiring have not been conclusively identified and characterized. Here, we reveal the existence of a basal Ca2+ flux originating from extracellular space and delivered to mitochondria by Ca2+ leakage from inositol triphosphate receptors in mitochondria-associated membranes. This Ca2+ flux primes mitochondrial metabolism by maintaining glycolysis and keeping mitochondria energized for ATP production. We identified citrin, a well-defined Ca2+-binding component of malate-aspartate shuttle in the mitochondrial intermembrane space, as predominant target of this basal Ca2+ regulation. Our data emphasize that any manipulation of this ubiquitous Ca2+ system has the potency to initiate metabolic rewiring as an instant and reversible cellular adaptation to physiological or pathological stress.


Subject(s)
Calcium-Binding Proteins/metabolism , Calcium/metabolism , Homeostasis , Organic Anion Transporters/metabolism , Cell Line , Humans
19.
Free Radic Biol Med ; 181: 197-208, 2022 03.
Article in English | MEDLINE | ID: mdl-35091061

ABSTRACT

Thyroid hormones act as master regulators of cellular metabolism. Thereby, the biologically active triiodothyronine (T3) induces the expression of genes to enhance mitochondrial metabolic function. Notably, Ca2+ ions are necessary for the activity of dehydrogenases of the tricarboxylic acid cycle and, thus, mitochondrial respiration. We investigated whether treating HeLa cells with T3 causes alterations in mitochondrial Ca2+ ([Ca2+]mito) levels. Real-time measurements by fluorescence microscopy revealed that treatment with T3 for 3 h induces a significant increase in basal [Ca2+]mito levels and [Ca2+]mito uptake upon the depletion of the endoplasmic reticulum (ER) Ca2+ store, while cytosolic Ca2+ levels remained unchanged. T3 incubation was found to upregulate mRNA expression levels of uncoupling proteins 2 and 3 (UCP2, UCP3) and of protein arginine methyltransferase 1 (PRMT1). Live-cell imaging revealed that T3-induced enhancement of mitochondrial Ca2+ uptake depends on the mitochondrial Ca2+ uniporter (MCU), UCP2, and PRMT1 that are essential for increased mitochondrial ATP ([ATP]mito) production after T3 treatment. Besides, increased [Ca2+]mito and [ATP]mito levels correlated with enhanced production of reactive oxygen species (ROS) in mitochondria. Notably, ROS scavenging causes mitochondrial Ca2+ elevation and outplays the impact of T3 on [Ca2+]mito homeostasis. Based on these results, we assume that thyroid hormones adjust [Ca2+]mito homeostasis by modulating the UCP2- and PRMT1-balanced [Ca2+]mito uptake via MCU in case of physiological ROS levels to convey their impact on mitochondrial ATP and ROS production.


Subject(s)
Calcium , Mitochondria , Triiodothyronine , Calcium/metabolism , HeLa Cells , Homeostasis , Humans , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Reactive Oxygen Species/metabolism , Repressor Proteins/metabolism , Triiodothyronine/pharmacology , Uncoupling Protein 2/metabolism
20.
Cell Calcium ; 101: 102517, 2022 01.
Article in English | MEDLINE | ID: mdl-34915234

ABSTRACT

OPA1 and MICU1 are both involved in the regulation of mitochondrial Ca2+ uptake and the stabilization of the cristae junction, which separates the inner mitochondrial membrane into the interboundary membrane and the cristae membrane. In this mini-review, we focus on the synergetic control of OPA1 and MICU1 on the cristae junction that serves as a fundamental regulator of multiple mitochondrial functions. In particular, we point to the critical role of an adaptive cristae junction permeability in mitochondrial Ca2+ signaling, spatial H+ gradients and mitochondrial membrane potential, metabolic activity, and apoptosis. These characteristics bear on a distinct localization of the oxidative phosphorylation machinery, the FoF1-ATPase, and mitochondrial Ca2+uniporter (MCU) within sections of the inner mitochondrial membrane isolated by the cristae junction and regulated by proteins like OPA1 and MICU1. We specifically focus on the impact of MICU1-regulated cristae junction on the activity and distribution of MCU within the complex ultrastructure of mitochondria.


Subject(s)
Mitochondrial Membrane Transport Proteins , Mitochondrial Membranes , Calcium/metabolism , Calcium Channels/metabolism , Calcium-Binding Proteins/metabolism , Energy Metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...