Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 10: 970, 2019.
Article in English | MEDLINE | ID: mdl-31134018

ABSTRACT

Biogas-energy is marginally profitable against the "parasitic" energy demands of processing biomass. Biogas involves microbial fermentation of feedstock hydrolyzate generated enzymatically or thermochemically. The latter also produces 5-hydroxymethyl furfural (5-HMF) which can be catalytically upgraded to 2, 5-dimethyl furan (DMF), a "drop in fuel." An integrated process is proposed with side-stream upgrading into DMF to mitigate the "parasitic" energy demand. 5-HMF was upgraded using bacterially-supported Pd/Ru catalysts. Purpose-growth of bacteria adds additional process costs; Pd/Ru catalysts biofabricated using the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans were compared to those generated from a waste consortium of acidophilic sulfidogens (CAS). Methyl tetrahydrofuran (MTHF) was used as the extraction-reaction solvent to compare the use of bio-metallic Pd/Ru catalysts to upgrade 5-HMF to DMF from starch and cellulose hydrolyzates. MTHF extracted up to 65% of the 5-HMF, delivering solutions, respectively, containing 8.8 and 2.2 g 5-HMF/L MTHF. Commercial 5% (wt/wt) Ru-carbon catalyst upgraded 5-HMF from pure solution but it was ineffective against the hydrolyzates. Both types of bacterial catalyst (5wt%Pd/3-5wt% Ru) achieved this, bio-Pd/Ru on the CAS delivering the highest conversion yields. The yield of 5-HMF from starch-cellulose thermal treatment to 2,5 DMF was 224 and 127 g DMF/kg extracted 5-HMF, respectively, for CAS and D. desulfuricans catalysts, which would provide additional energy of 2.1 and 1.2 kWh/kg extracted 5-HMF. The CAS comprised a mixed population with three patterns of metallic nanoparticle (NP) deposition. Types I and II showed cell surface-localization of the Pd/Ru while type III localized NPs throughout the cell surface and cytoplasm. No metallic patterning in the NPs was shown via elemental mapping using energy dispersive X-ray microanalysis but co-localization with sulfur was observed. Analysis of the cell surfaces of the bulk populations by X-ray photoelectron spectroscopy confirmed the higher S content of the CAS bacteria as compared to D. desulfuricans and also the presence of Pd-S as well as Ru-S compounds and hence a mixed deposit of PdS, Pd(0), and Ru in the form of various +3, +4, and +6 oxidation states. The results are discussed in the context of recently-reported controlled palladium sulfide ensembles for an improved hydrogenation catalyst.

2.
J Microbiol ; 56(10): 727-733, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30267316

ABSTRACT

The major industrial heap bioleaching processes are located in desert regions (mainly Chile and Australia) where fresh water is scarce and the use of resources with low water activity becomes an attractive alternative. However, in spite of the importance of the microbial populations involved in these processes, little is known about their response or adaptation to osmotic stress. In order to investigate the response to osmotic stress in these microorganisms, six species of acidophilic bacteria were grown at elevated osmotic strength in liquid media, and the compatible solutes synthesised were identified using ion chromatography and MALDI-TOF mass spectrometry. Trehalose was identified as one of, or the sole, compatible solute in all species and strains, apart from Acidithiobacillus thiooxidans where glucose and proline levels increased at elevated osmotic potentials. Several other potential compatible solutes were tentatively identified by MALDITOF analysis. The same compatible solutes were produced by these bacteria regardless of the salt used to produce the osmotic stress. The results correlate with data from sequenced genomes which confirm that many chemolithotrophic and heterotrophic acidophiles possess genes for trehalose synthesis. This is the first report to identify and quantify compatible solutes in acidophilic bacteria that have important roles in biomining technologies.


Subject(s)
Bacteria/metabolism , Osmotic Pressure , Trehalose/metabolism , Acidithiobacillus/metabolism , Adaptation, Physiological , Carbohydrate Metabolism , Culture Media/chemistry , Water
3.
Appl Environ Microbiol ; 84(7)2018 04 01.
Article in English | MEDLINE | ID: mdl-29374029

ABSTRACT

The type strain of the mineral-oxidizing acidophilic bacterium Acidithiobacillus ferridurans was grown in liquid medium containing elevated concentrations of sodium chloride with hydrogen as electron donor. While it became more tolerant to chloride, after about 1 year, the salt-stressed acidophile was found to have lost its ability to oxidize iron, though not sulfur or hydrogen. Detailed molecular examination revealed that this was due to an insertion sequence, ISAfd1, which belongs to the ISPepr1 subgroup of the IS4 family, having been inserted downstream of the two promoters PI and PII of the rus operon (which codes for the iron oxidation pathway in this acidophile), thereby preventing its transcription. The ability to oxidize iron was regained on protracted incubation of the culture inoculated onto salt-free solid medium containing ferrous iron and incubated under hydrogen. Two revertant strains were obtained. In one, the insertion sequence ISAfd1 had been excised, leaving an 11-bp signature, while in the other an ∼2,500-bp insertion sequence (belonging to the IS66 family) was detected in the downstream inverted repeat of ISAfd1 The transcriptional start site of the rus operon in the second revertant strain was downstream of the two ISs, due to the creation of a new "hybrid" promoter. The loss and subsequent regaining of the ability of A. ferriduransT to reduce ferric iron were concurrent with those observed for ferrous iron oxidation, suggesting that these two traits are closely linked in this acidophile.IMPORTANCE Iron-oxidizing acidophilic bacteria have primary roles in the oxidative dissolution of sulfide minerals, a process that underpins commercial mineral-processing biotechnologies ("biomining"). Most of these prokaryotes have relatively low tolerance to chloride, which limits their activities when only saline or brackish waters are available. The study showed that it was possible to adapt a typical iron-oxidizing acidophile to grow in the presence of salt concentrations similar to those in seawater, but in so doing they lost their ability to oxidize iron, though not sulfur or hydrogen. The bacterium regained its capacity for oxidizing iron when the salt stress was removed but simultaneously reverted to tolerating lower concentrations of salt. These results suggest that the bacteria that have the main roles in biomining operations could survive but become ineffective in cases where saline or brackish waters are used for irrigation.


Subject(s)
Acidithiobacillus/physiology , Genes, Bacterial , Iron/metabolism , Phenotype , Salt Stress/genetics , Transcription, Genetic , Acidithiobacillus/genetics , Operon , Oxidation-Reduction , Salt Tolerance/genetics
4.
Front Microbiol ; 8: 1009, 2017.
Article in English | MEDLINE | ID: mdl-28659871

ABSTRACT

The iron-oxidizing species Acidithiobacillus ferrivorans is one of few acidophiles able to oxidize ferrous iron and reduced inorganic sulfur compounds at low temperatures (<10°C). To complete the genome of At. ferrivorans strain CF27, new sequences were generated, and an update assembly and functional annotation were undertaken, followed by a comparative analysis with other Acidithiobacillus species whose genomes are publically available. The At. ferrivorans CF27 genome comprises a 3,409,655 bp chromosome and a 46,453 bp plasmid. At. ferrivorans CF27 possesses genes allowing its adaptation to cold, metal(loid)-rich environments, as well as others that enable it to sense environmental changes, allowing At. ferrivorans CF27 to escape hostile conditions and to move toward favorable locations. Interestingly, the genome of At. ferrivorans CF27 exhibits a large number of genomic islands (mostly containing genes of unknown function), suggesting that a large number of genes has been acquired by horizontal gene transfer over time. Furthermore, several genes specific to At. ferrivorans CF27 have been identified that could be responsible for the phenotypic differences of this strain compared to other Acidithiobacillus species. Most genes located inside At. ferrivorans CF27-specific gene clusters which have been analyzed were expressed by both ferrous iron-grown and sulfur-attached cells, indicating that they are not pseudogenes and may play a role in both situations. Analysis of the taxonomic composition of genomes of the Acidithiobacillia infers that they are chimeric in nature, supporting the premise that they belong to a particular taxonomic class, distinct to other proteobacterial subgroups.

5.
Res Microbiol ; 167(7): 613-23, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27154030

ABSTRACT

Eight strains of acidophilic bacteria, isolated from mine-impacted and geothermal sites from different parts of the world, were shown to form a distinct clade (proposed genus "Acidibacillus") within the phylum Firmicutes, well separated from the acidophilic genera Sulfobacillus and Alicyclobacillus. Two of the strains (both isolated from sites in Yellowstone National Park, USA) were moderate thermophiles that oxidised both ferrous iron and elemental sulphur, while the other six were mesophiles that also oxidised ferrous iron, but not sulphur. All eight isolates reduced ferric iron to varying degrees. The two groups shared <95% similarity of their 16S rRNA genes and were therefore considered to be distinct species: "Acidibacillus sulfuroxidans" (moderately thermophilic isolates) and "Acidibacillus ferrooxidans" (mesophilic isolates). Both species were obligate heterotrophs; none of the eight strains grew in the absence of organic carbon. "Acidibacillus" spp. were generally highly tolerant of elevated concentrations of cationic transition metals, though "A. sulfuroxidans" strains were more sensitive to some (e.g. nickel and zinc) than those of "A. ferrooxidans". Initial annotation of the genomes of two strains of "A. ferrooxidans" revealed the presence of genes (cbbL) involved in the RuBisCO pathway for CO2 assimilation and iron oxidation (rus), though with relatively low sequence identities.


Subject(s)
Bacillales/classification , Bacillales/isolation & purification , Environmental Microbiology , Minerals/metabolism , Bacillales/genetics , Bacillales/metabolism , Carbon/metabolism , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Ferric Compounds/metabolism , Ferrous Compounds/metabolism , Heterotrophic Processes , Organic Chemicals/metabolism , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfur/metabolism
6.
Genome Announc ; 2(4)2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25146142

ABSTRACT

"Ferrovum myxofaciens" is an iron-oxidizing betaproteobacterium with widespread distribution in acidic low-temperature environments, such as acid mine drainage streams. Here, we describe the genomic features of this novel acidophile and investigate the relevant metabolic pathways that enable its survival in these environments.

7.
Appl Microbiol Biotechnol ; 98(14): 6297-305, 2014.
Article in English | MEDLINE | ID: mdl-24687752

ABSTRACT

An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined.


Subject(s)
Acidithiobacillus/metabolism , Biotechnology/methods , Copper/isolation & purification , Copper/metabolism , Industrial Microbiology/methods , Acidithiobacillus/growth & development , Ferric Compounds/metabolism , Hydrogen-Ion Concentration , Oxidation-Reduction , Sulfur/metabolism , Temperature
8.
J Mol Recognit ; 15(3): 113-25, 2002.
Article in English | MEDLINE | ID: mdl-12203837

ABSTRACT

Our aim was to use a conformational analysis technique developed for peptides to identify structural relationships between bacterial cell wall peptides and beta-lactam antibiotics that might help to explain their different actions as substrates and inhibitors of penicillin binding proteins (PBPs). The conformational forms of the model cell wall peptide Ac-L-Lys(Ac)-D-Ala-D-Ala are described by just a few backbone torsion combinations: three C-terminal carboxylate regions, with Tor8 (psi(i+1)) ranges of D3 region (50 degrees to 70 degrees ), D6 region (140 degrees to 170 degrees ) and D9 region (-50 degrees to -70 degrees ) are combined with either of two Tor6 (phi(i))-Tor4 (psi(i)) combinations, C4 region (-50 degrees to -80 degrees ) with B8 region (-40 degrees to -70 degrees ) or C11 region (30 degrees to 50 degrees ) with B2 region (30 degrees to 70 degrees ). From these results, and comparisons with conformational analyses of various beta-lactams and Ac-L-Lys(Ac)-D-Ala-D-Lac, it is concluded that molecular recognition of cell wall peptide substrates by PBPs requires conformers with backbone torsion angles of D3C4B8. beta-Lactam antibiotics are constrained compounds with fewer conformational forms; these match well the backbone torsions of cell wall peptides at D3C4, allowing their recognition and acylation by PBPs, whereas their unique Tor4 produces differently orientated CO and N atoms that appear to prevent subsequent deacylation, leading to their action as suicide substrates. The results are also related to the selective pressures involved in evolution of beta-lactamases from PBPs. From analysis of conformers of Ac-L-Lys(Ac)-D-Ala-D-Ala and the vancomycin-resistant analogue Ac-L-Lys(Ac)-D-Ala-D-Lac, it is concluded that vancomycin may recognise D6C11B2 conformers, giving it complementary substrate specificity to PBPs. This approach could have applications in the rational design of antibiotics targeted against PBPs and their substrates.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Carrier Proteins/chemistry , Cell Wall/chemistry , Drug Resistance, Bacterial , Evolution, Molecular , Hexosyltransferases , Muramoylpentapeptide Carboxypeptidase/chemistry , Peptides/chemistry , Peptidyl Transferases , Amino Acid Sequence , Anti-Bacterial Agents/chemistry , Bacteria/chemistry , Bacteria/cytology , Bacterial Proteins/genetics , Carrier Proteins/genetics , Drug Design , Models, Molecular , Molecular Structure , Muramoylpentapeptide Carboxypeptidase/genetics , Penicillin-Binding Proteins , Protein Conformation , Substrate Specificity , Vancomycin/chemistry , Vancomycin/pharmacology , beta-Lactams
SELECTION OF CITATIONS
SEARCH DETAIL
...