Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 20435, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443381

ABSTRACT

Despite beneficial effects in acute heart failure, the full therapeutic potential of recombinant relaxin-2 has been hampered by its short half-life and the need for intravenous administration limiting its use to intensive care units. A multiparametric optimization of the relaxin B-chain led to the identification of single chain lipidated peptide agonists of RXFP1 like SA10SC-RLX with subcutaneous bioavailability and extended half-life. SA10SC-RLX has sub nanomolar activity on cells expressing human RXFP1 and molecular modeling associated with the study of different RXFP1 mutants was used to decipher the mechanism of SA10SC-RLX interaction with RXFP1. Telemetry was performed in rat where SA10SC-RLX was able to engage RXFP1 after subcutaneous administration without tachyphylaxis after repeated dosing. Renal blood flow was then used as a translational model to evaluate RXFP1 activation. SA10SC-RLX increased renal blood flow and decreased renal vascular resistance in rats as reported for relaxin in humans. In conclusion, SA10SC-RLX mimics relaxin activity in in vitro and in vivo models of acute RXFP1 engagement. SA10SC-RLX represents a new class of long-lasting RXFP1 agonist, suitable for once daily subcutaneous administration in patients and potentially paving the way to new treatments for chronic fibrotic and cardiovascular diseases.


Subject(s)
Relaxin , Humans , Animals , Rats , Relaxin/pharmacology , Half-Life , Renal Circulation , Models, Molecular , Administration, Intravenous , Receptors, Peptide/genetics , Receptors, G-Protein-Coupled
2.
FEBS Open Bio ; 10(10): 2010-2020, 2020 10.
Article in English | MEDLINE | ID: mdl-32810927

ABSTRACT

Sphingosine-1 phosphate receptor-1 (S1P1 ) activation maintains endothelial barrier integrity, whereas S1P1 desensitization induces peripheral blood lymphopenia. The latter is exploited in the approval and/or late-stage development of receptor-desensitizing agents targeting the S1P1 receptor in multiple sclerosis, such as siponimod, ozanimod, and ponesimod. SAR247799 is a recently described G protein-biased S1P1 agonist that activates S1P1 without desensitization and thus has endothelial-protective properties in patients without reducing lymphocytes. As SAR247799 demonstrated endothelial-protective effects at sub-lymphocyte-reducing doses, the possibility exists that other S1P1 modulators could also exhibit endothelial-protective properties at lower doses. To explore this possibility, we sought to quantitatively compare the biased properties of SAR247799 with the most advanced clinical molecules targeting S1P1 . In this study, we define the ß-arrestin pathway component of the impedance profile following S1P1 activation in a human umbilical vein endothelial cell line (HUVEC) and report quantitative indices of the S1P1 activation-to-desensitization ratio of various clinical molecules. In a label-free impedance assay assessing endothelial barrier integrity and disruption, the mean estimates (95% confidence interval) of the activation-to-desensitization ratios of SAR247799, ponesimod, ozanimod, and siponimod were 114 (91.1-143), 7.66 (3.41-17.2), 6.35 (3.21-12.5), and 0.170 (0.0523-0.555), respectively. Thus, we show that SAR247799 is the most G protein-biased S1P1 agonist currently characterized. This rank order of bias among the most clinically advanced S1P1 modulators provides a new perspective on the relative potential of these clinical molecules for improving endothelial function in patients in relation to their lymphocyte-reducing (desensitization) properties.


Subject(s)
Endothelial Cells/drug effects , Sphingosine-1-Phosphate Receptors/agonists , Acetates/pharmacology , Azetidines/pharmacology , Benzyl Compounds/pharmacology , Electric Impedance , Endothelial Cells/metabolism , Endothelial Cells/physiology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Indans/pharmacology , Lymphocytes/drug effects , Multiple Sclerosis/drug therapy , Oxadiazoles/pharmacology , Pyrimidines/pharmacology , Signal Transduction/physiology , Sphingosine-1-Phosphate Receptors/metabolism , Thiazoles/pharmacology
3.
Sci Signal ; 13(634)2020 06 02.
Article in English | MEDLINE | ID: mdl-32487716

ABSTRACT

Endothelial dysfunction is a hallmark of tissue injury and is believed to initiate the development of vascular diseases. Sphingosine-1 phosphate receptor-1 (S1P1) plays fundamental physiological roles in endothelial function and lymphocyte homing. Currently available clinical molecules that target this receptor are desensitizing and are essentially S1P1 functional antagonists that cause lymphopenia. They are clinically beneficial in autoimmune diseases such as multiple sclerosis. In patients, several side effects of S1P1 desensitization have been attributed to endothelial damage, suggesting that drugs with the opposite effect, namely, the ability to activate S1P1, could help to restore endothelial homeostasis. We found and characterized a biased agonist of S1P1, SAR247799, which preferentially activated downstream G protein signaling to a greater extent than ß-arrestin and internalization signaling pathways. SAR247799 activated S1P1 on endothelium without causing receptor desensitization and potently activated protection pathways in human endothelial cells. In a pig model of coronary endothelial damage, SAR247799 improved the microvascular hyperemic response without reducing lymphocyte numbers. Similarly, in a rat model of renal ischemia/reperfusion injury, SAR247799 preserved renal structure and function at doses that did not induce S1P1-desensitizing effects, such as lymphopenia and lung vascular leakage. In contrast, a clinically used S1P1 functional antagonist, siponimod, conferred minimal renal protection and desensitized S1P1 These findings demonstrate that sustained S1P1 activation can occur pharmacologically without compromising the immune response, providing a new approach to treat diseases associated with endothelial dysfunction and vascular hyperpermeability.


Subject(s)
Endothelial Cells/metabolism , Kidney Diseases/drug therapy , Kidney/metabolism , Reperfusion Injury/drug therapy , Signal Transduction/drug effects , Sphingosine-1-Phosphate Receptors/agonists , Animals , CHO Cells , Cricetulus , Disease Models, Animal , Humans , Kidney Diseases/genetics , Kidney Diseases/metabolism , Lymphocytes/metabolism , Rats , Reperfusion Injury/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...