Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 24(10): 5813-5822, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35226003

ABSTRACT

Sulfuric acid is shown to form a core-shell particle on a micron-sized, optically-trapped spherical silica bead. The refractive indices of the silica and sulfuric acid, along with the shell thickness and bead radius were determined by reproducing Mie scattered optical white light as a function of wavelength in Mie spectroscopy. Micron-sized silica aerosols (silica beads were used as a proxy for atmospheric silica minerals) were levitated in a mist of sulfuric acid particles; continuous collection of Mie spectra throughout the collision of sulfuric acid aerosols with the optically trapped silica aerosol demonstrated that the resulting aerosol particle had a core-shell morphology. Contrastingly, the collision of aqueous sulfuric acid aerosols with optically trapped polystyrene aerosol resulted in a partially coated system. The light scattering from the optically levitated aerosols was successfully modelled to determine the diameter of the core aerosol (±0.003 µm), the shell thickness (±0.0003 µm) and the refractive index (±0.007). The experiment demonstrated that the presence of a thin film rapidly changed the light scattering of the original aerosol. When a 1.964 µm diameter silica aerosol was covered with a film of sulfuric acid 0.287 µm thick, the wavelength dependent Mie peak positions resembled sulfuric acid. Thus mineral aerosol advected into the stratosphere would likely be coated with sulfuric acid, with a core-shell morphology, and its light scattering properties would be effectively indistinguishable from a homogenous sulfuric acid aerosol if the film thickness was greater than a few 100 s of nm for UV-visible wavelengths.

2.
Opt Express ; 24(3): 1953-72, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26906772

ABSTRACT

We investigate the accuracy in retrieving the real refractive index of submicron aerosol particles, at a visible wavelength, from near critical angle reflectance measurements of a dilute suspension of the aerosol. A coherent scattering model (CSM) is used to model the coherent reflectance from the colloidal suspension. We use an extension of the model for polydisperse particles to properly account for the modified size distribution close to the incident medium to colloid interface. We perform a rigorous sensitivity analysis, for both the monodisperse and polydisperse models, to determine how experimental uncertainties propagate into uncertainty in the retrieval of real refractive index. The effect of non-spherical scattering was included in the sensitivity analysis by using T-matrix methods. Experimental reflectance data, at a wavelength of 635 nm, were obtained for monodisperse spherical latex particles, a polydisperse sand sample and a polydisperse volcanic ash sample. We show that the retrieved real refractive index for these particles is consistent with values obtained using other techniques.

3.
Appl Opt ; 51(21): 5130-43, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22858954

ABSTRACT

The overlap function of a Raman channel for a lidar system is retrieved by nonlinear regression using an analytic description of the optical system and a simple model for the extinction profile, constrained by aerosol optical thickness. Considering simulated data, the scheme is successful even where the aerosol profile deviates significantly from the simple model assumed. Application to real data is found to reduce by a factor of 1.4-2.0 the root-mean-square difference between the attenuated backscatter coefficient as measured by the calibrated instrument and a commercial instrument.

4.
Appl Opt ; 44(7): 1332-41, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15765714

ABSTRACT

A new method for the retrieval of the spectral refractive indices of micrometer-sized particles from infrared aerosol extinction spectra has been developed. With this method we use a classical damped harmonic-oscillator model of molecular absorption in conjunction with Mie scattering to model extinction spectra, which we then fit to the measurements using a numerical optimal estimation algorithm. The main advantage of this method over the more traditional Kramers-Kronig approach is that it allows the full complex refractive-index spectra, along with the parameters of the particle size distribution, to be retrieved from a single extinction spectrum. The retrieval scheme has been extensively characterized and has been found to provide refractive indices with a maximum uncertainty of approximately 10% (with a minimum of approximately 0.1%). Comparison of refractive indices calculated from measurements of a ternary solution of HNO3, H2SO4, and H2O with those published in J. Phys. Chem. A 104, 783 (2000) show similar differences as found by other authors.

5.
Appl Opt ; 43(28): 5386-93, 2004 Oct 01.
Article in English | MEDLINE | ID: mdl-15495430

ABSTRACT

Analytical expressions are found for the derivatives of commonly used Mie scattering parameters, in particular the absorption and the scattering efficiencies, and for the angular intensity functions. These expressions are based on the analytical derivatives of the Mie scattering amplitudes a(n) and b(n) with respect to the particle size parameter and complex refractive index. In addition, analytical derivatives are found for the volume absorption and scattering coefficients, as well as for the intensity functions of a population of particles with log normal size distribution. These derivatives are given with respect to the total number density, to the median radius and spread of the distribution, and to the refractive index. Comparison between analytically and numerically computed derivatives showed the analytical version to be 2.5 to 6.5 times as fast for the single-particle and particle-distribution cases, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...