Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 921: 171017, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38369145

ABSTRACT

Abandoned Mine Lands (AMLs) are areas where previous mineral extraction or processing has occurred. Hundreds of thousands of AMLs exist within the United States. Contaminated runoff from AMLs can negatively affect the physiology and ecology of surrounding terrestrial and aquatic habitats and species and can be detrimental to human health. As a response, several U.S. federal and state agencies have launched programs to assess health risks associated with AMLs. In some cases, however, AMLs may be beneficial to specific wildlife taxa. There is a relative paucity of studies investigating the physiological and ecological impacts of AMLs on wildlife. We conducted a systematic review examining published scientific articles that assessed the negative and positive impacts of AMLs across invertebrate and vertebrate taxa. We also offer suggestions on evaluating AMLs to develop effective mitigation strategies that reduce their negative tole on human and wildlife communities. Peer-reviewed publications were screened across WebofScience, PubMed and Google Scholar databases. Abandoned mine lands were generally detrimental to wildlife, with adverse effects ranging from bioaccumulation of heavy metals to decreased ecological fitness. Conversely, AMLs were an overall benefit to imperiled bat populations and could serve as tools for conservation. Studies were unevenly distributed across different wildlife taxa groups, echoing the necessity for additional taxonomically diverse research. We suggest that standardized wildlife survey methods be used to assess how different species utilize AMLs. Federal and state agencies can use these surveys to establish effective remediation plans for individual AML sites and minimize the risks to both wildlife and humans.


Subject(s)
Animals, Wild , Mining , Animals , Ecosystem , Environment , Etoposide , Ifosfamide , United States
2.
Zookeys ; 1129: 21-35, 2022.
Article in English | MEDLINE | ID: mdl-36761844

ABSTRACT

Studies using complete mitochondrial genome data have the potential to increase our understanding on gene organisations and evolutionary species relationships. In this study, we compared complete mitochondrial genomes between all 22 squamate species listed in South Korea. In addition, we constructed Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian Inference (BI) phylogenetic trees using 13 mitochondrial protein-coding genes. The mitochondrial genes for all six species in the suborder Sauria followed the same organisation as the sequenced Testudines (turtle) outgroup. In contrast, 16 snake species in the suborder Serpentes contained some gene organisational variations. For example, all snake species contained a second control region (CR2), while three species in the family Viperidae had a translocated tRNA-Pro gene region. In addition, the snake species, Elapheschrenckii, carried a tRNA-Pro pseudogene. We were also able to identify a translocation of a tRNA-Asn gene within the five tRNA (WANCY gene region) gene clusters for two true sea snake species in the subfamily Hydrophiinae. Our BI phylogenetic tree was also well fitted against currently known Korean squamate phylogenetic trees, where each family and genus unit forms monophyletic clades and the suborder Sauria is paraphyletic to the suborder Serpentes. Our results may form the basis for future northeast Asian squamate phylogenetic studies.

3.
Biol Open ; 10(11)2021 11 15.
Article in English | MEDLINE | ID: mdl-34796905

ABSTRACT

Identifying which environmental and genetic factors affect growth pattern phenotypes can help biologists predict how organisms distribute finite energy resources in response to varying environmental conditions and physiological states. This information may be useful for monitoring and managing populations of cryptic, endangered, and invasive species. Consequently, we assessed the effects of food availability, clutch, and sex on the growth of invasive Burmese pythons (Python bivittatus Kuhl) from the Greater Everglades Ecosystem in Florida, USA. Though little is known from the wild, Burmese pythons have been physiological model organisms for decades, with most experimental research sourcing individuals from the pet trade. Here, we used 60 hatchlings collected as eggs from the nests of two wild pythons, assigned them to High or Low feeding treatments, and monitored growth and meal consumption for 12 weeks, a period when pythons are thought to grow very rapidly. None of the 30 hatchlings that were offered food prior to their fourth week post-hatching consumed it, presumably because they were relying on internal yolk stores. Although only two clutches were used in the experiment, we found that nearly all phenotypic variation was explained by clutch rather than feeding treatment or sex. Hatchlings from clutch 1 (C1) grew faster and were longer, heavier, in better body condition, ate more frequently, and were bolder than hatchlings from clutch 2 (C2), regardless of food availability. On average, C1 and C2 hatchling snout-vent length (SVL) and weight grew 0.15 cm d-1 and 0.10 cm d-1, and 0.20 g d-1 and 0.03 g d-1, respectively. Additional research may be warranted to determine whether these effects remain with larger clutch sample sizes and to identify the underlying mechanisms and fitness implications of this variation to help inform risk assessments and management. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Boidae/embryology , Embryo, Nonmammalian/embryology , Embryonic Development , Food Supply , Sex Factors , Animals , Clutch Size , Female , Florida , Introduced Species , Male
4.
J Therm Biol ; 100: 103065, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34503803

ABSTRACT

Snake Fungal Disease (SFD) negatively impacts wild snake populations in the eastern United States and Europe. Ophidiomyces ophidiicola causes SFD and manifests clinically by the formation of heterophilic granulomas around the mouth and eyes, weight loss, impaired vision, and sometimes death. Field observations have documented early seasonal basking behaviors in severely infected snakes, potentially suggesting induction of a behavioral febrile response to combat the mycosis. This study tested the hypothesis that snakes inoculated with Ophidiomyces ophidiicola would seek elevated basking temperatures to control body temperature and behaviorally induce a febrile response. Eastern ribbon snakes (Thamnophis saurita, n = 29) were experimentally or sham inoculated with O. ophidiicola. Seven days after inoculation, snakes were tested on a thermal gradient and the internal body temperature and substrate temperature of each snake was recorded over time. Quantitative PCR was used when snakes arrived, during pre-inoculation, and post-inoculation to test snakes for the presence of O. ophidiicola. Some snakes arrived with O. ophidiicola and were subsequently inoculated, allowing for an assessment of secondary exposure effects. Snake thermoregulatory behavior was compared between 1) O. ophidiicola inoculated vs. sham inoculated treatments, 2) infected vs. disease negative groups, and 3) disease naïve vs. pre-exposed immune response categories. Neither internal nor substrate temperatures differed among initially prescribed, and qPCR recovered disease states, although infected snakes tended to reach a preferred body temperature faster than disease negative snakes. Snakes experiencing their first exposure (disease naïve) sought higher substrate temperatures than snakes experiencing their second exposure (pre-exposed). Here, we recover no evidence for behaviorally induced fever in snakes with SFD but do elucidate a febrile immune response associated with secondary exposure.


Subject(s)
Body Temperature , Colubridae/physiology , Mycoses/physiopathology , Onygenales/pathogenicity , Animals , Colubridae/microbiology
5.
Microb Ecol ; 80(3): 603-613, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32424717

ABSTRACT

Understanding the ecological processes that shape species assemblage patterns is central to community ecology. The effects of ecological processes on assemblage patterns are scale-dependent. We used metabarcoding and shotgun sequencing to determine bacterial taxonomic and functional assemblage patterns among varying defined focal scales (micro-, meso-, and macroscale) within the American alligator (Alligator mississippiensis) nesting microbiome. We correlate bacterial assemblage patterns among eight nesting compartments within and proximal to alligator nests (micro-), across 18 nests (meso-), and between 4 geographic sampling sites (macro-), to determine which ecological processes may drive bacterial assemblage patterns within the nesting environment. Among all focal scales, bacterial taxonomic and functional richness (α-diversity) did not statistically differ. In contrast, bacterial assemblage structure (ß-diversity) was unique across all focal scales, whereas functional pathways were redundant within nests and across geographic sites. Considering these observed scale-based patterns, taxonomic bacterial composition may be governed by unique environmental filters and dispersal limitations relative to microbial functional attributes within the alligator nesting environment. These results advance pattern-process dynamics within the field of microbial community ecology and describe processes influencing the American alligator nest microbiome.


Subject(s)
Alligators and Crocodiles , Bacteria/isolation & purification , Bacterial Physiological Phenomena , Ecosystem , Microbiota , Animals , Bacteria/classification , Ecology , Environmental Microbiology , Nesting Behavior , Texas
6.
Microb Ecol ; 79(4): 985-997, 2020 May.
Article in English | MEDLINE | ID: mdl-31802185

ABSTRACT

A multicellular host and its microbial communities are recognized as a metaorganism-a composite unit of evolution. Microbial communities have a variety of positive and negative effects on the host life history, ecology, and evolution. This study used high-throughput amplicon sequencing to characterize the complete skin and gut microbial communities, including both bacteria and fungi, of a terrestrial salamander, Plethodon glutinosus (Family Plethodontidae). We assessed salamander populations, representing nine mitochondrial haplotypes ('clades'), for differences in microbial assemblages across 13 geographic locations in the Southeastern United States. We hypothesized that microbial assemblages were structured by both host factors and geographic distance. We found a strong correlation between all microbial assemblages at close geographic distances, whereas, as spatial distance increases, the patterns became increasingly discriminate. Network analyses revealed that gut-bacterial communities have the highest degree of connectedness across geographic space. Host salamander clade was explanatory of skin-bacterial and gut-fungal assemblages but not gut-bacterial assemblages, unless the latter were analyzed within a phylogenetic context. We also inferred the function of gut-fungal assemblages to understand how an understudied component of the gut microbiome may influence salamander life history. We concluded that dispersal limitation may in part describe patterns in microbial assemblages across space and also that the salamander host may select for skin and gut communities that are maintained over time in closely related salamander populations.


Subject(s)
Bacterial Physiological Phenomena , Fungi/physiology , Gastrointestinal Tract/microbiology , Microbiota , Skin/microbiology , Urodela/microbiology , Animal Distribution , Animals , Bacteria/isolation & purification , Fungi/isolation & purification , Gastrointestinal Microbiome , Mycobiome , Southeastern United States , Spatial Analysis , Tennessee
7.
ISME J ; 13(9): 2209-2222, 2019 09.
Article in English | MEDLINE | ID: mdl-31065028

ABSTRACT

Understanding how biological patterns translate into functional processes across different scales is a central question in ecology. Within a spatial context, extent is used to describe the overall geographic area of a study, whereas grain describes the overall unit of observation. This study aimed to characterize the snake skin microbiota (grain) and to determine host-microbial assemblage-pathogen effects across spatial extents within the Southern United States. The causative agent of snake fungal disease, Ophidiomyces ophiodiicola, is a fungal pathogen threatening snake populations. We hypothesized that the skin microbial assemblage of snakes differs from its surrounding environment, by host species, spatial scale, season, and in the presence of O. ophiodiicola. We collected snake skin swabs, soil samples, and water samples across six states in the Southern United States (macroscale extent), four Tennessee ecoregions (mesoscale extent), and at multiple sites within each Tennessee ecoregion (microscale extent). These samples were subjected to DNA extraction and quantitative PCR to determine the presence/absence of O. ophiodiicola. High-throughput sequencing was also utilized to characterize the microbial communities. We concluded that the snake skin microbial assemblage was partially distinct from environmental microbial communities. Snake host species was strongly predictive of the skin microbiota at macro-, meso-, and microscale spatial extents; however, the effect was variable across geographic space and season. Lastly, the presence of the fungal pathogen O. ophiodiicola is predictive of skin microbial assemblages across macro- and meso-spatial extents, and particular bacterial taxa associate with O. ophiodiicola pathogen load. Our results highlight the importance of scale regarding wildlife host-pathogen-microbial assemblage interactions.


Subject(s)
Bacteria/isolation & purification , Microbiota , Mycoses/veterinary , Skin/microbiology , Snakes/microbiology , Animals , Animals, Wild/microbiology , Bacteria/classification , Bacteria/genetics , Fungi/genetics , Fungi/physiology , Mycoses/microbiology , Real-Time Polymerase Chain Reaction , Snakes/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...