Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Quantum Inf Process ; 15(12): 5385-5414, 2016.
Article in English | MEDLINE | ID: mdl-28408863

ABSTRACT

We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system: a combined microfabricated ion trap and superconducting qubit architecture, and the experimental infrastructure to facilitate both technologies. Developing upon work by Kielpinski et al. (Phys Rev Lett 108(13):130504, 2012. doi:10.1103/PhysRevLett.108.130504), we describe the design, simulation and fabrication process for a microfabricated ion trap capable of coupling an ion to a superconducting microwave LC circuit with a coupling strength in the tens of kHz. We also describe existing difficulties in combining the experimental infrastructure of an ion trapping set-up into a dilution refrigerator with superconducting qubits and present solutions that can be immediately implemented using current technology.

2.
Phys Rev Lett ; 110(5): 053602, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23414019

ABSTRACT

We demonstrate amplification of a microwave signal by a strongly driven two-level system in a coplanar waveguide resonator. The effect, similar to the dressed-state lasing known from quantum optics, is observed with a single quantum system formed by a persistent current (flux) qubit. The transmission through the resonator is enhanced when the Rabi frequency of the driven qubit is tuned into resonance with one of the resonator modes. Amplification as well as linewidth narrowing of a weak probe signal has been observed. The stimulated emission in the resonator has been studied by measuring the emission spectrum. We analyzed our system and found an excellent agreement between the experimental results and the theoretical predictions obtained in the dressed-state model.

3.
Rev Sci Instrum ; 82(10): 104705, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22047315

ABSTRACT

An ultra-low-noise one-stage SiGe heterojunction bipolar transistor amplifier was designed for cryogenic temperatures and a frequency range of 10 kHz-100 MHz. A noise temperature T(N) ≈ 1.4 K was measured at an ambient temperature of 4.2 K at frequencies between 100 kHz and 100 MHz for a source resistance of ~50 Ω. The voltage gain of the amplifier was 25 dB at a power consumption of 720 µW. The input voltage noise spectral density of the amplifier is about 35 pV/√Hz. The low noise resistance and power consumption makes the amplifier suitable for readout of resistively shunted DC SQUID magnetometers and amplifiers.

4.
Phys Rev Lett ; 101(1): 017003, 2008 Jul 04.
Article in English | MEDLINE | ID: mdl-18764145

ABSTRACT

We compare the results of ground state and spectroscopic measurements carried out on superconducting flux qubits which are effective two-level quantum systems. For a single qubit and for two coupled qubits we show excellent agreement between the parameters of the pseudospin Hamiltonian found using both methods. We argue that by making use of the ground state measurements the Hamiltonian of N coupled flux qubits can be reconstructed as well at temperatures smaller than the energy level separation. Such a reconstruction of a many-qubit Hamiltonian can be useful for future quantum information processing devices.

5.
Phys Rev Lett ; 98(5): 057004, 2007 Feb 02.
Article in English | MEDLINE | ID: mdl-17358887

ABSTRACT

We have realized controllable coupling between two three-junction flux qubits by inserting an additional coupler loop between them, containing three Josephson junctions. Two of these are shared with the qubit loops, providing strong qubit-coupler interaction. The third junction gives the coupler a nontrivial current-flux relation; its derivative (i.e., the susceptibility) determines the coupling strength J, which thus is tunable in situ via the coupler's flux bias. In the qubit regime, J was varied from approximately 45 (antiferromagnetic) to approximately -55 mK (ferromagnetic); in particular, J vanishes for an intermediate coupler bias. Measurements on a second sample illuminate the relation between two-qubit tunable coupling and three-qubit behavior.

6.
Phys Rev Lett ; 96(4): 047006, 2006 Feb 03.
Article in English | MEDLINE | ID: mdl-16486877

ABSTRACT

We present the first experimental results on a device with more than two superconducting qubits. The circuit consists of four three-junction flux qubits, with simultaneous ferro- and antiferromagnetic coupling implemented using shared Josephson junctions. Its response, which is dominated by the ground state, is characterized using low-frequency impedance measurement with a superconducting tank circuit coupled to the qubits. The results are found to be in excellent agreement with the quantum-mechanical predictions.

7.
Phys Rev Lett ; 93(3): 037003, 2004 Jul 16.
Article in English | MEDLINE | ID: mdl-15323858

ABSTRACT

We have studied the low-frequency magnetic susceptibility of two inductively coupled flux qubits using the impedance measurement technique (IMT), through their influence on the resonant properties of a weakly coupled high-quality tank circuit. In a single qubit, an IMT dip in the tank's current-voltage phase angle at the level anticrossing yields the amplitude of coherent flux tunneling. For two qubits, the difference (IMT deficit) between the sum of single-qubit dips and the dip amplitude when both qubits are at degeneracy shows that the system is in a mixture of entangled states (a necessary condition for entanglement). The dependence on temperature and relative bias between the qubits allows one to determine all the parameters of the effective Hamiltonian and equilibrium density matrix, and confirms the formation of entangled eigenstates.

8.
Phys Rev Lett ; 91(9): 097906, 2003 Aug 29.
Article in English | MEDLINE | ID: mdl-14525214

ABSTRACT

Under resonant irradiation, a quantum system can undergo coherent (Rabi) oscillations in time. We report evidence for such oscillations in a continuously observed three-Josephson-junction flux qubit, coupled to a high-quality tank circuit tuned to the Rabi frequency. In addition to simplicity, this method of Rabi spectroscopy enabled a long coherence time of about 2.5 micros, corresponding to an effective qubit quality factor approximately 7000.

9.
Phys Rev Lett ; 86(23): 5369-72, 2001 Jun 04.
Article in English | MEDLINE | ID: mdl-11384500

ABSTRACT

We have measured the current-phase relationship I(varphi) of symmetric 45 degrees YBa2Cu3O7-x grain boundary Josephson junctions. Substantial deviations of the Josephson current from conventional tunnel-junction behavior have been observed: (i) The critical current exhibits, as a function of temperature T, a local minimum at a temperature T*. (ii) At T approximately T*, the first harmonic of I(phi) changes sign. (iii) For T

SELECTION OF CITATIONS
SEARCH DETAIL
...