Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1166: 338332, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34022995

ABSTRACT

The use of 3D printing in the chemical and analytical sciences has gained a lot of momentum in recent years. Some of the earliest publications detailed 3D-printed interfaces for mass spectrometry, which is an evolving family of powerful detection techniques. Since then, the application of 3D printing for enhancing mass spectrometry has significantly diversified, with important reasons for its application including flexible integration of different parts or devices, fast customization of setups, additional functionality, portability, cost-effectiveness, and user-friendliness. Moreover, computer-aided design (CAD) and 3D printing enables the rapid and wide distribution of scientific and engineering knowledge. 3D printers allow fast prototyping with constantly increasing resolution in a broad range of materials using different fabrication principles. Moreover, 3D printing has proven its value in the development of novel technologies for multiple analytical applications such as online and offline sample preparation, ionization, ion transport, and developing interfaces for the mass spectrometer. Additionally, 3D-printed devices are often used for the protection of more fragile elements of a sample preparation system in a customized fashion, and allow the embedding of external components into an integrated system for mass spectrometric analysis. This review comprehensively addresses these developments, since their introduction in 2013. Moreover, the challenges and choices with respect to the selection of the most appropriate printing process in combination with an appropriate material for a mass spectrometric application are addressed; special attention is paid to chemical compatibility, ease of production, and cost. In this review, we critically discuss these developments and assess their impact on mass spectrometry.

2.
Anal Chem ; 90(23): 13815-13825, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30452240

ABSTRACT

This paper focuses on one of the most commonly encountered materials in our society, namely paper. Paper is an inherently complex material, yet its use provides for chemical analysis approaches that are elegant in their simplicity of execution. In the first half of the previous century, paper in scientific research was used mainly for filtration and chromatographic separation. While its use decreased with the rise of modern elution chromatography, paper remains a versatile substrate for low-cost analytical tests. Recently, we have seen renewed interest to work with paper in (bio)analytical science, a result of the growing demand for inexpensive, portable analysis. Dried blood spotting, paper microfluidics, and paper spray ionization are areas in which paper is (re)establishing itself as an important material. These research areas all exploit several properties of paper, including stable sample storage, passive fluid movement and manipulation, chromatographic separation/extraction, modifiable surface and/or volume, easily altered shape, easy transport, and low cost. We propose that the real, and to date underexploited, potential of paper lies in utilizing its combined characteristics to add new dimensions to paper-based (bio)chemical analysis, expanding its applicability. This article provides the reader with a short historical perspective on the scientific use of paper and the developments that led to the establishment of the aforementioned research areas. We review important characteristics of paper and place them in a scientific context in this descriptive, yet critical, assessment of the achieved and the achievable in paper-based analysis. The ultimate goal is the exploration of integrative approaches at the interface between the different fields in which paper is or can be used.


Subject(s)
Dried Blood Spot Testing , Microfluidic Analytical Techniques , Paper , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...