Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 7: e7552, 2019.
Article in English | MEDLINE | ID: mdl-31565557

ABSTRACT

Coral reefs are in decline worldwide. In response to this habitat loss, there are efforts to grow, outplant, and restore corals in many regions. The physical oceanographic habitat of corals-such as sea temperature, waves, ocean currents, and available light-is spatially heterogeneous. We therefore hypothesize that outplant location may affect microbiomes, and ultimately, coral health and restoration success. We evaluated the influence of the physical oceanographic habitat on microbes in wild Porites astreoides and Siderastrea siderea. Tissue samples were collected at four Florida reefs in March, June, and September of 2015. We estimated oceanographic conditions from moored instruments, diver observations, remote sensing data, and numerical models. We analyzed microbiomes using amplicon 16S rRNA high-throughput sequencing data. We found microbial alpha-diversity negatively correlated with in situ sea temperature (which represented both the annual cycle and upwelling), as well as modeled alongshore currents, in situ sea-level, and modeled tide. Microbial beta-diversity correlated positively with significant wave height and alongshore currents from models, remotely-sensed relative turbidity, and in situ temperature. We found that archaea from the order Marine Group II decrease with increases in significant wave height, suggesting that this taxon may be influenced by waves. Also, during times of high wave activity, the relative abundance of bacteria from the order Flavobacteriales increases, which may be due to resuspension and cross-shelf transport of sediments. We also found that bacteria from the order SAR86 increase in relative abundance with increased temperature, which suggests that this taxon may play a role in the coral microbiome during periods of higher temperature. Overall, we find that physical oceanographic variability correlates with the structure of these coral microbiomes in ways that could be significant to coral health.

2.
PLoS One ; 6(8): e23047, 2011.
Article in English | MEDLINE | ID: mdl-21853066

ABSTRACT

BACKGROUND: Coral reefs are facing increasing pressure from natural and anthropogenic stressors that have already caused significant worldwide declines. In January 2010, coral reefs of Florida, United States, were impacted by an extreme cold-water anomaly that exposed corals to temperatures well below their reported thresholds (16°C), causing rapid coral mortality unprecedented in spatial extent and severity. METHODOLOGY/PRINCIPAL FINDINGS: Reef surveys were conducted from Martin County to the Lower Florida Keys within weeks of the anomaly. The impacts recorded were catastrophic and exceeded those of any previous disturbances in the region. Coral mortality patterns were directly correlated to in-situ and satellite-derived cold-temperature metrics. These impacts rival, in spatial extent and intensity, the impacts of the well-publicized warm-water bleaching events around the globe. The mean percent coral mortality recorded for all species and subregions was 11.5% in the 2010 winter, compared to 0.5% recorded in the previous five summers, including years like 2005 where warm-water bleaching was prevalent. Highest mean mortality (15%-39%) was documented for inshore habitats where temperatures were <11°C for prolonged periods. Increases in mortality from previous years were significant for 21 of 25 coral species, and were 1-2 orders of magnitude higher for most species. CONCLUSIONS/SIGNIFICANCE: The cold-water anomaly of January 2010 caused the worst coral mortality on record for the Florida Reef Tract, highlighting the potential catastrophic impacts that unusual but extreme climatic events can have on the persistence of coral reefs. Moreover, habitats and species most severely affected were those found in high-coral cover, inshore, shallow reef habitats previously considered the "oases" of the region, having escaped declining patterns observed for more offshore habitats. Thus, the 2010 cold-water anomaly not only caused widespread coral mortality but also reversed prior resistance and resilience patterns that will take decades to recover.


Subject(s)
Anthozoa/physiology , Cold Temperature , Coral Reefs , Seawater , Animals , Florida , Geography , Oceans and Seas , Survival Analysis , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...