Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(5): e2305366, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38054210

ABSTRACT

Quantifying the intrinsic properties of 2D materials is of paramount importance for advancing their applications. Large-scale production of 2D materials merits the need for approaches that provide direct information about the role of growth substrate on 2D material properties. Transferring the 2D material from its growth substrates can modify the intrinsic properties of the asgrown 2D material. In this study, suspended chemical vapor deposition (CVD) graphene films are prepared directly on their growth substrates in a high-density grid array. The approach facilitates the quantification of intrinsic strain and doping in suspended CVD graphene films. To achieve this, transmission electron microscopy and large-area Raman mapping are employed. Remarkably, the analysis reveals consistent patterns of compressive strain (≈-0.2%) both in the diffraction patterns and Raman maps obtained from these suspended graphene films. By conducting investigations directly on the growth substrates, the potential influences introduced during the transfer process are circumvented effectively. Consequently, the methodology offers a robust and reliable means of studying the intrinsic properties of 2D materials in their authentic form, uninfluenced by the transfer-induced alterations that may skew the interpretation of their properties.

2.
ACS Appl Mater Interfaces ; 15(31): 37756-37763, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37490848

ABSTRACT

High-field-effect mobility and the two-dimensional nature of graphene films make it an interesting material for developing sensing applications with high sensitivity and low power consumption. The chemical vapor deposition process allows for producing high-quality graphene films in a scalable manner. Considering the significant impact of the underlying substrate on the graphene device performance, methods to enhance the field-effect mobility are highly desired. This work demonstrates a simplified fabrication process to develop suspended, two-terminal chemical vapor deposition (CVD) graphene devices with enhanced field-effect mobility operating at room temperature. Enhanced hole field-effect mobility of up to ∼4.8 × 104 cm2/Vs and average hole mobility >1 × 104 cm2/Vs across all of the devices is demonstrated. A gradual increase in the width of the graphene device resulted in the increase of the full width at half-maximum (FWHM) of field-effect characteristics and a decrease in the field-effect mobility. Our work presents a simplified fabrication approach to realize high-mobility suspended CVD graphene devices, beneficial for developing CVD graphene-related applications.

3.
Carbohydr Polym ; 287: 119229, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35422279

ABSTRACT

The interaction between small molecules and neutral soluble dietary fiber is one of the proposed mechanisms determining the bioavailability of these components in the small intestine. However, the weak nature of these interactions makes it difficult to find an analytical method sensitive enough to detect them. Here, we probed the molecular interaction between galactomannan, arabinoxylan, and ß-glucan with gallic acid, cinnamic acid, acetylsalicylic acid, and acetaminophen, using advanced analytical methods, namely isothermal titration calorimetry (ITC) and in the form of gold-nanoparticles, transmission electron microscopy (TEM). The results obtained from ITC analysis were fully consistent with the results obtained from TEM. In short, the interaction of these fibers and small molecules was mainly entropically driven, hence involving hydrophobic type association and possible conformational changes of the polysaccharide. However, the enthalpy contribution (hydrogen interaction) is also significant, especially regarding interactions with the acetylsalicylic acid molecule.


Subject(s)
Dietary Fiber , Calorimetry/methods , Hydrophobic and Hydrophilic Interactions , Thermodynamics
4.
ACS Appl Mater Interfaces ; 7(13): 7389-96, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25776274

ABSTRACT

In this paper, we report on the synthesis of FeCo/Cu multisegmented nanowires by means of pulse electrodeposition in nanoporous anodic aluminum oxide arrays supported on silicon chips. By adjustment of the electrodeposition conditions, such as the pulse scheme and the electrolyte, alternating segments of Cu and ferromagnetic FeCo alloy can be fabricated. The segments can be built with a wide range of lengths (15-150 nm) and exhibit a close-to-pure composition (Cu or FeCo alloy) as suggested by energy-dispersive X-ray mapping results. The morphology and the crystallographic structure of different nanowire configurations have been assessed thoroughly, concluding that Fe, Co, and Cu form solid solution. Magnetic characterization using vibrating sample magnetometry and magnetic force microscopy reveals that by introduction of nonmagnetic Cu segments within the nanowire architecture, the magnetic easy axis can be modified and the reduced remanence can be tuned to the desired values. The experimental results are in agreement with the provided simulations. Furthermore, the influence of nanowire magnetic architecture on the magnetically triggered protein desorption is evaluated for three types of nanowires: Cu, FeCo, and multisegmented FeCo15nm/Cu15nm. The application of an external magnetic field can be used to enhance the release of proteins on demand. For fully magnetic FeCo nanowires the applied oscillating field increased protein release by 83%, whereas this was found to be 45% for multisegmented FeCo15nm/Cu15nm nanowires. Our work suggests that a combination of arrays of nanowires with different magnetic configurations could be used to generate complex substance concentration gradients or control delivery of multiple drugs and macromolecules.


Subject(s)
Metal Nanoparticles/chemistry , Metal Nanoparticles/radiation effects , Nanowires/chemistry , Nanowires/radiation effects , Proteins/chemistry , Absorption, Physicochemical/radiation effects , Adsorption/radiation effects , Cobalt/chemistry , Copper/chemistry , Crystallization/methods , Electroplating/methods , Iron/chemistry , Magnetic Fields , Materials Testing , Metal Nanoparticles/ultrastructure , Nanowires/ultrastructure , Protein Binding/radiation effects , Proteins/radiation effects
5.
J Colloid Interface Sci ; 361(1): 90-6, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21652047

ABSTRACT

We report for the first time on the templating effect of ß-lactoglobulin amyloid-like fibrils to synthesize gold single crystals of several decades of µm in dimensions. The gold single crystals were produced by reducing an aqueous solution of chloroauric acid by ß-lactoglobulin amyloid protein fibrils. Atomic force microscopy, conventional and scanning transmission electron microscopy, electron diffraction and optical microscopy techniques were combined to characterize the structure of the gold crystals. The single-crystalline features of these macroscopic gold crystals are witnessed by their distinctive hexagonal and triangular shape and are confirmed by selected area electron diffraction (SAED). UV-vis absorption spectrum, recorded after a reaction time of 6h at the heating temperature of 55°C showed a surface plasmon resonance peak at 540 nm. With the increase of reaction time to 24h, the absorption spectrum peaks shift to a very broad and higher wavelength region extending up to near infrared region. Remarkably, these single crystalline gold crystals show auto fluorescence when illuminated to UV lamp. Further increase in ß-lactoglobulin amyloid fibrils concentration above the isotropic-nematic transition, drives the formation of gold single crystals microplates stacking together and self-assembling into new hierarchical, layered protein-gold hybrid composites.


Subject(s)
Amyloid/chemistry , Crystallization/methods , Gold/chemistry , Lactoglobulins/chemistry , Nanocomposites/chemistry , Chlorides/chemistry , Fluorescence , Gold Compounds/chemistry , Green Chemistry Technology/methods , Liquid Crystals/chemistry , Nanocomposites/ultrastructure , Oxidation-Reduction
6.
Langmuir ; 26(8): 5763-71, 2010 Apr 20.
Article in English | MEDLINE | ID: mdl-20302277

ABSTRACT

We present for the first time a general vacuum process for the growth of supported organic nanowires formed by pi-conjugated molecules, including metalloporphyrins, metallophthalocyanines, and perylenes. This methodology consists on a one-step physical vapor deposition of the pi-conjugated molecules. The synthesis is carried out at controlled temperature on substrates with tailor morphology which allows the growth of organic nanowires in the form of squared nanofibers and nanobelts. The study of the nanowires by electron diffraction and HRTEM combining with the results of a theoretical analysis of the possible arrangement of the pi-conjugated molecules along the nanowires reveals that the nanowires show a columnar structure along the fiber axis consisting of pi-stacked molecules having a herringbone-like arrangement. The formation of these nanowires on different substrates demonstrates that the growth mechanism is independent of the substrate chemical composition. An in-depth phenomenological study of the formation of the nanowires drives us to propose a growth mechanism based on a crystallization process. Furthermore, the growth method allows the fabrication of two particular 1D heterostructures: binary and open core@shell organic nanofibers.

7.
Science ; 315(5815): 1113-6, 2007 Feb 23.
Article in English | MEDLINE | ID: mdl-17322057

ABSTRACT

Despite substantial advances in crystal structure determination methodology for polycrystalline materials, some problems have remained intractable. A case in point is the zeolite catalyst IM-5, whose structure has eluded determination for almost 10 years. Here we present a charge-flipping structure-solution algorithm, extended to facilitate the combined use of powder diffraction and electron microscopy data. With this algorithm, we have elucidated the complex structure of IM-5, with 24 topologically distinct silicon atoms and an unusual two-dimensional medium-pore channel system. This powerful approach to structure solution can be applied without modification to any type of polycrystalline material (e.g., catalysts, ceramics, pharmaceuticals, complex metal alloys) and is therefore pertinent to a diverse range of scientific disciplines.

8.
Nature ; 444(7115): 79-81, 2006 Nov 02.
Article in English | MEDLINE | ID: mdl-17080087

ABSTRACT

Many industrially important materials, ranging from ceramics to catalysts to pharmaceuticals, are polycrystalline and cannot be grown as single crystals. This means that non-conventional methods of structure analysis must be applied to obtain the structural information that is fundamental to the understanding of the properties of these materials. Electron microscopy might appear to be a natural approach, but only relatively simple structures have been solved by this route. Powder diffraction is another obvious option, but the overlap of reflections with similar diffraction angles causes an ambiguity in the relative intensities of those reflections. Various ways of overcoming or circumventing this problem have been developed, and several of these involve incorporating chemical information into the structure determination process. For complex zeolite structures, the FOCUS algorithm has proved to be effective. Because it operates in both real and reciprocal space, phase information obtained from high-resolution transmission electron microscopy images can be incorporated directly into this algorithm in a simple way. Here we show that by doing so, the complexity limit can be extended much further. The power of this approach has been demonstrated with the solution of the structure of the zeolite TNU-9 (|H9.3|[Al9.3Si182.7O384]; ref. 10) with 24 topologically distinct (Si,Al) atoms and 52 such O atoms. For comparison, ITQ-22 (ref. 11), the most complex zeolite known to date, has 16 topologically distinct (Si,Ge) atoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...