Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 1890, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29382912

ABSTRACT

Efforts to improve existing anti-HIV-1 therapies or develop preventatives have identified CCR5 as an important target and CCL5 as an ideal scaffold to sculpt potent HIV-1 entry inhibitors. We created novel human CCL5 variants that exhibit exceptional anti-HIV-1 features using recombinant lactobacilli (exploited for live microbicide development) as a screening platform. Protein design, expression and anti-HIV-1 activity flowed in iterative cycles, with a stepwise integration of successful mutations and refinement of an initial CCL5 mutant battery towards the generation of two ultimate CCL5 derivatives, a CCR5 agonist and a CCR5 antagonist with similar anti-HIV-1 potency. The CCR5 antagonist was tested in human macrophages and against primary R5 HIV-1 strains, exhibiting cross-clade low picomolar IC50 activity. Moreover, its successful combination with several HIV-1 inhibitors provided the ground for conceiving therapeutic and preventative anti-HIV-1 cocktails. Beyond HIV-1 infection, these CCL5 derivatives may now be tested against several inflammation-related pathologies where the CCL5:CCR5 axis plays a relevant role.


Subject(s)
Anti-HIV Agents/pharmacology , Chemokine CCL5/genetics , HIV-1/drug effects , Lactobacillus/drug effects , Lactobacillus/genetics , Mutagenesis/genetics , CCR5 Receptor Antagonists/pharmacology , Cells, Cultured , HIV Infections/drug therapy , HIV Infections/genetics , Humans , Macrophages/drug effects , Mutagenesis/drug effects , Receptors, CCR5/genetics
2.
PLoS Genet ; 12(3): e1005894, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26967905

ABSTRACT

Ciliopathies are a group of genetic multi-systemic disorders related to dysfunction of the primary cilium, a sensory organelle present at the cell surface that regulates key signaling pathways during development and tissue homeostasis. In order to identify novel genes whose mutations would cause severe developmental ciliopathies, >500 patients/fetuses were analyzed by a targeted high throughput sequencing approach allowing exome sequencing of >1200 ciliary genes. NEK8/NPHP9 mutations were identified in five cases with severe overlapping phenotypes including renal cystic dysplasia/hypodysplasia, situs inversus, cardiopathy with hypertrophic septum and bile duct paucity. These cases highlight a genotype-phenotype correlation, with missense and nonsense mutations associated with hypodysplasia and enlarged cystic organs, respectively. Functional analyses of NEK8 mutations in patient fibroblasts and mIMCD3 cells showed that these mutations differentially affect ciliogenesis, proliferation/apoptosis/DNA damage response, as well as epithelial morphogenesis. Notably, missense mutations exacerbated some of the defects due to NEK8 loss of function, highlighting their likely gain-of-function effect. We also showed that NEK8 missense and loss-of-function mutations differentially affect the regulation of the main Hippo signaling effector, YAP, as well as the expression of its target genes in patient fibroblasts and renal cells. YAP imbalance was also observed in enlarged spheroids of Nek8-invalidated renal epithelial cells grown in 3D culture, as well as in cystic kidneys of Jck mice. Moreover, co-injection of nek8 MO with WT or mutated NEK8-GFP RNA in zebrafish embryos led to shortened dorsally curved body axis, similar to embryos injected with human YAP RNA. Finally, treatment with Verteporfin, an inhibitor of YAP transcriptional activity, partially rescued the 3D spheroid defects of Nek8-invalidated cells and the abnormalities of NEK8-overexpressing zebrafish embryos. Altogether, our study demonstrates that NEK8 human mutations cause major organ developmental defects due to altered ciliogenesis and cell differentiation/proliferation through deregulation of the Hippo pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cilia/genetics , Phosphoproteins/genetics , Polycystic Kidney Diseases/genetics , Protein Kinases/genetics , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/biosynthesis , Animals , Cell Differentiation/genetics , Cilia/pathology , Female , Genetic Association Studies , Humans , Kidney/metabolism , Kidney/pathology , Mice , Morphogenesis/genetics , Mutation , NIMA-Related Kinases , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/biosynthesis , Polycystic Kidney Diseases/pathology , Porphyrins/administration & dosage , Signal Transduction , Transcription Factors , Verteporfin , YAP-Signaling Proteins , Zebrafish
3.
J Cell Biol ; 198(5): 927-40, 2012 Sep 03.
Article in English | MEDLINE | ID: mdl-22927466

ABSTRACT

Cilia are at the core of planar polarity cellular events in many systems. However, the molecular mechanisms by which they influence the polarization process are unclear. Here, we identify the function of the ciliopathy protein Rpgrip1l in planar polarity. In the mouse cochlea and in the zebrafish floor plate, Rpgrip1l was required for positioning the basal body along the planar polarity axis. Rpgrip1l was also essential for stabilizing dishevelled at the cilium base in the zebrafish floor plate and in mammalian renal cells. In rescue experiments, we showed that in the zebrafish floor plate the function of Rpgrip1l in planar polarity was mediated by dishevelled stabilization. In cultured cells, Rpgrip1l participated in a complex with inversin and nephrocystin-4, two ciliopathy proteins known to target dishevelled to the proteasome, and, in this complex, Rpgrip1l prevented dishevelled degradation. We thus uncover a ciliopathy protein complex that finely tunes dishevelled levels, thereby modulating planar cell polarity processes.


Subject(s)
Cell Polarity/physiology , Cilia/physiology , Proteins/metabolism , Zebrafish Proteins/metabolism , Animals , Cell Line , Cilia/metabolism , Cochlea/metabolism , Cochlea/physiology , Cytoskeletal Proteins , Mice , Mice, Inbred C57BL , Transcription Factors/metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...