Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
EBioMedicine ; 71: 103559, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34461601

ABSTRACT

BACKGROUND: The most common B-cell cancers, chronic lymphocytic leukemia/lymphoma (CLL), follicular and diffuse large B-cell (FL, DLBCL) lymphomas, have distinct clinical courses, yet overlapping "cell-of-origin". Dynamic changes to the epigenome are essential regulators of B-cell differentiation. Therefore, we reasoned that these distinct cancers may be driven by shared mechanisms of disruption in transcriptional circuitry. METHODS: We compared purified malignant B-cells from 52 patients with normal B-cell subsets (germinal center centrocytes and centroblasts, naïve and memory B-cells) from 36 donor tonsils using >325 high-resolution molecular profiling assays for histone modifications, open chromatin (ChIP-, FAIRE-seq), transcriptome (RNA-seq), transcription factor (TF) binding, and genome copy number (microarrays). FINDINGS: From the resulting data, we identified gains in active chromatin in enhancers/super-enhancers that likely promote unchecked B-cell receptor signaling, including one we validated near the immunoglobulin superfamily receptors FCMR and PIGR. More striking and pervasive was the profound loss of key B-cell identity TFs, tumor suppressors and their super-enhancers, including EBF1, OCT2(POU2F2), and RUNX3. Using a novel approach to identify transcriptional feedback, we showed that these core transcriptional circuitries are self-regulating. Their selective gain and loss form a complex, iterative, and interactive process that likely curbs B-cell maturation and spurs proliferation. INTERPRETATION: Our study is the first to map the transcriptional circuitry of the most common blood cancers. We demonstrate that a critical subset of B-cell TFs and their cognate enhancers form self-regulatory transcriptional feedback loops whose disruption is a shared mechanism underlying these diverse subtypes of B-cell lymphoma. FUNDING: National Institute of Health, Siteman Cancer Center, Barnes-Jewish Hospital Foundation, Doris Duke Foundation.


Subject(s)
B-Lymphocytes/metabolism , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Leukemia, B-Cell/etiology , Lymphoma, B-Cell/etiology , Transcription, Genetic , Adult , Aged , Aged, 80 and over , B-Lymphocytes/immunology , Biomarkers , Cell Transformation, Neoplastic/metabolism , Chromatin Immunoprecipitation Sequencing , Computational Biology/methods , DNA Copy Number Variations , Enhancer Elements, Genetic , Epigenesis, Genetic , Female , Gene Expression Profiling , Humans , Immunophenotyping , Leukemia, B-Cell/diagnosis , Leukemia, B-Cell/metabolism , Lymphoma, B-Cell/diagnosis , Lymphoma, B-Cell/metabolism , Male , Middle Aged , Models, Biological , Oncogenes , Signal Transduction , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...