Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 7113, 2022 11 19.
Article in English | MEDLINE | ID: mdl-36402789

ABSTRACT

NRAS-mutated melanoma lacks a specific line of treatment. Metabolic reprogramming is considered a novel target to control cancer; however, NRAS-oncogene contribution to this cancer hallmark is mostly unknown. Here, we show that NRASQ61-mutated melanomas specific metabolic settings mediate cell sensitivity to sorafenib upon metabolic stress. Mechanistically, these cells are dependent on glucose metabolism, in which glucose deprivation promotes a switch from CRAF to BRAF signaling. This scenario contributes to cell survival and sustains glucose metabolism through BRAF-mediated phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-2/3 (PFKFB2/PFKFB3). In turn, this favors the allosteric activation of phosphofructokinase-1 (PFK1), generating a feedback loop that couples glycolytic flux and the RAS signaling pathway. An in vivo treatment of NRASQ61 mutant melanomas, including patient-derived xenografts, with 2-deoxy-D-glucose (2-DG) and sorafenib effectively inhibits tumor growth. Thus, we provide evidence for NRAS-oncogene contributions to metabolic rewiring and a proof-of-principle for the treatment of NRASQ61-mutated melanoma combining metabolic stress (glycolysis inhibitors) and previously approved drugs, such as sorafenib.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Sorafenib/pharmacology , Cell Line, Tumor , Mutation , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Glycolysis/genetics , Glucose/metabolism , Stress, Physiological , Phosphofructokinase-2/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism
2.
Commun Biol ; 3(1): 366, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32647375

ABSTRACT

Elucidating the contribution of somatic mutations to cancer is essential for personalized medicine. STK11 (LKB1) appears to be inactivated in human cancer. However, somatic missense mutations also occur, and the role/s of these alterations to this disease remain unknown. Here, we investigated the contribution of four missense LKB1 somatic mutations in tumor biology. Three out of the four mutants lost their tumor suppressor capabilities and showed deficient kinase activity. The remaining mutant retained the enzymatic activity of wild type LKB1, but induced increased cell motility. Mechanistically, LKB1 mutants resulted in differential gene expression of genes encoding vesicle trafficking regulating molecules, adhesion molecules and cytokines. The differentially regulated genes correlated with protein networks identified through comparative secretome analysis. Notably, three mutant isoforms promoted tumor growth, and one induced inflammation-like features together with dysregulated levels of cytokines. These findings uncover oncogenic roles of LKB1 somatic mutations, and will aid in further understanding their contributions to cancer development and progression.


Subject(s)
Biomarkers, Tumor/genetics , Cell Movement , Inflammation/pathology , Lung Neoplasms/pathology , Melanoma/pathology , Mutation, Missense , Protein Serine-Threonine Kinases/genetics , AMP-Activated Protein Kinase Kinases , Animals , Apoptosis , Biomarkers, Tumor/metabolism , Cell Cycle , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Melanoma/genetics , Melanoma/immunology , Melanoma/metabolism , Mice , Mice, Nude , Phosphorylation , Protein Isoforms , Protein Serine-Threonine Kinases/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
3.
J Cell Physiol ; 234(10): 18041-18052, 2019 08.
Article in English | MEDLINE | ID: mdl-30851071

ABSTRACT

Identification of to what extent tumor burden influences muscle mass independently of specific treatments for cancer-cachexia remains to be elucidated. We hypothesized that reduced tumor burden by selective treatment of tumor with immunomodulators may exert beneficial effects on muscle wasting and function in mice. Body and muscle weight, grip strength, physical activity, muscle morphometry, apoptotic nuclei, troponin-I systemic levels, interleukin-6, proteolytic markers, and tyrosine release, and apoptosis markers were determined in diaphragm and gastrocnemius muscles of lung cancer (LP07 adenocarcinoma cells) mice (BALB/c) treated with monoclonal antibodies (mAbs), against immune check-points and pathways (CD-137, cytotoxic T-lymphocyte associated protein-4, programed cell death-1, and CD-19; N = 10/group). Nontreated lung cancer cachectic mice were the controls. T and B cell numbers and macrophages were counted in tumors of both mouse groups. Compared to nontreated cachectic mice, in the mAbs-treated animals, T cells increased, no differences in B cells or macrophages, the variables final body weight, body weight and grip strength gains significantly improved. In diaphragm and gastrocnemius of mAbs-treated cachectic mice, number of apoptotic nuclei, tyrosine release, proteolysis, and apoptosis markers significantly decreased compared to nontreated cachectic mice. Systemic levels of troponin-I significantly decreased in treated cachectic mice compared to nontreated animals. We conclude that reduced tumor burden as a result of selective treatment of the lung cancer cells with immunomodulators elicits per se beneficial effects on muscle mass loss through attenuation of several biological mechanisms that lead to increased protein breakdown and apoptosis, which translated into significant improvements in limb muscle strength but not in physical activity parameters.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cachexia/drug therapy , Lung Neoplasms/drug therapy , Muscle Proteins/metabolism , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Animals , Cachexia/immunology , Cachexia/metabolism , Cachexia/pathology , Cell Line, Tumor , Female , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Inbred BALB C , Muscle, Skeletal/immunology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...