Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Article in English | MEDLINE | ID: mdl-38884893

ABSTRACT

PURPOSE: Autonomous navigation of catheters and guidewires can enhance endovascular surgery safety and efficacy, reducing procedure times and operator radiation exposure. Integrating tele-operated robotics could widen access to time-sensitive emergency procedures like mechanical thrombectomy (MT). Reinforcement learning (RL) shows potential in endovascular navigation, yet its application encounters challenges without a reward signal. This study explores the viability of autonomous guidewire navigation in MT vasculature using inverse reinforcement learning (IRL) to leverage expert demonstrations. METHODS: Employing the Simulation Open Framework Architecture (SOFA), this study established a simulation-based training and evaluation environment for MT navigation. We used IRL to infer reward functions from expert behaviour when navigating a guidewire and catheter. We utilized the soft actor-critic algorithm to train models with various reward functions and compared their performance in silico. RESULTS: We demonstrated feasibility of navigation using IRL. When evaluating single- versus dual-device (i.e. guidewire versus catheter and guidewire) tracking, both methods achieved high success rates of 95% and 96%, respectively. Dual tracking, however, utilized both devices mimicking an expert. A success rate of 100% and procedure time of 22.6 s were obtained when training with a reward function obtained through 'reward shaping'. This outperformed a dense reward function (96%, 24.9 s) and an IRL-derived reward function (48%, 59.2 s). CONCLUSIONS: We have contributed to the advancement of autonomous endovascular intervention navigation, particularly MT, by effectively employing IRL based on demonstrator expertise. The results underscore the potential of using reward shaping to efficiently train models, offering a promising avenue for enhancing the accessibility and precision of MT procedures. We envisage that future research can extend our methodology to diverse anatomical structures to enhance generalizability.

2.
Cell Genom ; 4(1): 100463, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38216284

ABSTRACT

In animal cells, molecular pathways often comprise families of variant components, such as ligands or receptors. These pathway components are differentially expressed by different cell types, potentially tailoring pathway function to cell context. However, it has remained unclear how pathway expression profiles are distributed across cell types and whether similar profiles can occur in dissimilar cell types. Here, using single-cell gene expression datasets, we identified pathway expression motifs, defined as recurrent expression profiles that are broadly distributed across diverse cell types. Motifs appeared in core pathways, including TGF-ß, Notch, Wnt, and the SRSF splice factors, and involved combinatorial co-expression of multiple components. Motif usage was weakly correlated between pathways in adult cell types and during dynamic developmental transitions. Together, these results suggest a mosaic view of cell type organization, in which different cell types operate many of the same pathways in distinct modes.


Subject(s)
Signal Transduction , Transforming Growth Factor beta , Animals , Signal Transduction/genetics , Transforming Growth Factor beta/genetics
3.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873089

ABSTRACT

Astrocyte specification during development is influenced by both intrinsic and extrinsic factors, but the precise contribution of each remains poorly understood. Here we show that septal astrocytes from Nkx2.1 and Zic4 expressing progenitor zones are allocated into non-overlapping domains of the medial (MS) and lateral septal nuclei (LS) respectively. Astrocytes in these areas exhibit distinctive molecular and morphological features tailored to the unique cellular and synaptic circuit environment of each nucleus. Using single-nucleus (sn) RNA sequencing, we trace the developmental trajectories of cells in the septum and find that neurons and astrocytes undergo region and developmental stage-specific local cell-cell interactions. We show that expression of the classic morphogens Sonic hedgehog (Shh) and Fibroblast growth factors (Fgfs) by MS and LS neurons respectively, functions to promote the molecular specification of local astrocytes in each region. Finally, using heterotopic cell transplantation, we show that both morphological and molecular specifications of septal astrocytes are highly dependent on the local microenvironment, regardless of developmental origins. Our data highlights the complex interplay between intrinsic and extrinsic factors shaping astrocyte identities and illustrates the importance of the local environment in determining astrocyte functional specialization.

4.
Elife ; 122023 10 13.
Article in English | MEDLINE | ID: mdl-37830426

ABSTRACT

Background: Infection by coronavirus SARS-CoV2 is a severe and often deadly disease that has implications for the respiratory system and multiple organs across the human body. While the effects in the lung have been extensively studied, less is known about the impact COVID-19 has across other organs. Methods: Here, we contribute a single-nuclei RNA-sequencing atlas comprising six human organs across 20 autopsies where we analyzed the transcriptional changes due to COVID-19 in multiple cell types. The integration of data from multiple organs enabled the identification of systemic transcriptional changes. Results: Computational cross-organ analysis for endothelial cells and macrophages identified systemic transcriptional changes in these cell types in COVID-19 samples. In addition, analysis of gene modules showed enrichment of specific signaling pathways across multiple organs in COVID-19 autopsies. Conclusions: Altogether, the COVID Tissue Atlas enables the investigation of both cell type-specific and cross-organ transcriptional responses to COVID-19, providing insights into the molecular networks affected by the disease and highlighting novel potential targets for therapies and drug development. Funding: The Chan-Zuckerberg Initiative, The Chan-Zuckerberg Biohub.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Endothelial Cells , RNA, Viral , Lung
5.
Front Hum Neurosci ; 17: 1239374, 2023.
Article in English | MEDLINE | ID: mdl-37600553

ABSTRACT

Background: Autonomous navigation of catheters and guidewires in endovascular interventional surgery can decrease operation times, improve decision-making during surgery, and reduce operator radiation exposure while increasing access to treatment. Objective: To determine from recent literature, through a systematic review, the impact, challenges, and opportunities artificial intelligence (AI) has for the autonomous navigation of catheters and guidewires for endovascular interventions. Methods: PubMed and IEEEXplore databases were searched to identify reports of AI applied to autonomous navigation methods in endovascular interventional surgery. Eligibility criteria included studies investigating the use of AI in enabling the autonomous navigation of catheters/guidewires in endovascular interventions. Following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), articles were assessed using Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). PROSPERO: CRD42023392259. Results: Four hundred and sixty-two studies fulfilled the search criteria, of which 14 studies were included for analysis. Reinforcement learning (RL) (9/14, 64%) and learning from expert demonstration (7/14, 50%) were used as data-driven models for autonomous navigation. These studies evaluated models on physical phantoms (10/14, 71%) and in-silico (4/14, 29%) models. Experiments within or around the blood vessels of the heart were reported by the majority of studies (10/14, 71%), while non-anatomical vessel platforms "idealized" for simple navigation were used in three studies (3/14, 21%), and the porcine liver venous system in one study. We observed that risk of bias and poor generalizability were present across studies. No procedures were performed on patients in any of the studies reviewed. Moreover, all studies were limited due to the lack of patient selection criteria, reference standards, and reproducibility, which resulted in a low level of evidence for clinical translation. Conclusion: Despite the potential benefits of AI applied to autonomous navigation of endovascular interventions, the field is in an experimental proof-of-concept stage, with a technology readiness level of 3. We highlight that reference standards with well-identified performance metrics are crucial to allow for comparisons of data-driven algorithms proposed in the years to come. Systematic review registration: identifier: CRD42023392259.

6.
J Neurosci Methods ; 396: 109933, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37524245

ABSTRACT

BACKGROUND: Deep learning-based (DL) methods are the best-performing methods for white matter tract segmentation in anatomically healthy subjects. However, tract annotations are variable or absent in clinical data and manual annotations are especially difficult in patients with tumors where normal anatomy may be distorted. Direct cortical and subcortical stimulation is the gold standard ground truth to determine the cortical and sub-cortical lo- cation of motor-eloquent areas intra-operatively. Nonetheless, this technique is invasive, prolongs the surgical procedure, and may cause patient fatigue. Navigated Transcranial Magnetic Stimulation (nTMS) has a well-established correlation to direct cortical stimulation for motor mapping and the added advantage of being able to be acquired pre-operatively. NEW METHOD: In this work, we evaluate the feasibility of using nTMS motor responses as a method to assess corticospinal tract (CST) binary masks and estimated uncertainty generated by a DL-based tract segmentation in patients with diffuse gliomas. RESULTS: Our results show CST binary masks have a high overlap coefficient (OC) with nTMS response masks. A strong negative correlation is found between estimated uncertainty and nTMS response mask distance to the CST binary mask. COMPARISON WITH EXISTING METHODS: We compare our approach (UncSeg) with the state-of-the-art TractSeg in terms of OC between the CST binary masks and nTMS response masks. CONCLUSIONS: In this study, we demonstrate that estimated uncertainty from UncSeg is a good measure of the agreement between the CST binary masks and nTMS response masks distance to the CST binary mask boundary.


Subject(s)
Brain Neoplasms , Glioma , Humans , Transcranial Magnetic Stimulation/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Diffusion Tensor Imaging/methods , Brain Mapping/methods , Glioma/surgery , Neuronavigation/methods
7.
Int J Med Mushrooms ; 25(3): 63-74, 2023.
Article in English | MEDLINE | ID: mdl-37017662

ABSTRACT

To further knowledge of the biological activity of native neotropical fungal species, this study aimed to determine the chemical composition and microbiological activity of Hornodermoporus martius. Ethanol, hexane, diethyl ether, and ethyl acetate fractions and the water residue were analyzed and resulted in a total phenolic compound content between 13 and 63 mg of gallic acid equivalents per gram of crude extract. The total antioxidants ranged between 3 and 19 mg of ascorbic acid equivalents per gram of crude extract, and the percentage of antioxidant activity was determined to be between 6 and 25%. A preliminary profile of compounds is provided for the first time for the species; the results from the nonpolar fraction showcased the presence of saturated and unsaturated acids, fatty alcohol, sterols, and cis-vaccenic acid. Our findings also revealed antimicrobial properties from compounds within the hexane and diethyl ether fractions at concentrations of 1 mg mL-1, which inhibited the growth of certain gram-positive and gram-negative bacteria. For the first time in academic literature, our work analyzed and documented the chemical characteristics and microbial properties of H. martius, suggesting potential for medicinal applications.


Subject(s)
Anti-Bacterial Agents , Hexanes , Anti-Bacterial Agents/pharmacology , Plant Extracts/chemistry , Ether , Paraguay , Gram-Negative Bacteria , Gram-Positive Bacteria , Antioxidants/pharmacology
8.
Brain ; 146(6): 2377-2388, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37062539

ABSTRACT

Around 50% of patients undergoing frontal lobe surgery for focal drug-resistant epilepsy become seizure free post-operatively; however, only about 30% of patients remain seizure free in the long-term. Early seizure recurrence is likely to be caused by partial resection of the epileptogenic lesion, whilst delayed seizure recurrence can occur even if the epileptogenic lesion has been completely excised. This suggests a coexistent epileptogenic network facilitating ictogenesis in close or distant dormant epileptic foci. As thalamic and striatal dysregulation can support epileptogenesis and disconnection of cortico-thalamostriatal pathways through hemispherotomy or neuromodulation can improve seizure outcome regardless of focality, we hypothesize that projections from the striatum and the thalamus to the cortex may contribute to this common epileptogenic network. To this end, we retrospectively reviewed a series of 47 consecutive individuals who underwent surgery for drug-resistant frontal lobe epilepsy. We performed voxel-based and tractography disconnectome analyses to investigate shared patterns of disconnection associated with long-term seizure freedom. Seizure freedom after 3 and 5 years was independently associated with disconnection of the anterior thalamic radiation and anterior cortico-striatal projections. This was also confirmed in a subgroup of 29 patients with complete resections, suggesting these pathways may play a critical role in supporting the development of novel epileptic networks. Our study indicates that network dysfunction in frontal lobe epilepsy may extend beyond the resection and putative epileptogenic zone. This may be critical in the pathogenesis of delayed seizure recurrence as thalamic and striatal networks may promote epileptogenesis and disconnection may underpin long-term seizure freedom.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Frontal Lobe , Humans , Epilepsy, Frontal Lobe/surgery , Retrospective Studies , Treatment Outcome , Electroencephalography , Seizures/surgery , Drug Resistant Epilepsy/surgery
9.
Sci Rep ; 12(1): 705, 2022 01 13.
Article in English | MEDLINE | ID: mdl-35027636

ABSTRACT

Venta Micena, an Early Pleistocene site of the Baza Basin (SE Spain), preserves a rich and diverse assemblage of large mammals. VM3, the main excavation quarry of the site, has been interpreted as a den of the giant hyaena Pachycrocuta brevirostris in the plain that surrounded the Baza palaeolake. Taphonomic analysis of VM3 has shown that the hyaenas scavenged the prey previously hunted by the hypercarnivores, transported their remains to the communal den, and consumed the skeletal parts according to their marrow contents and mineral density. In a recent paper (Luzón et al. in Sci Rep 11:13977, https://doi.org/10.1038/s41598-021-93261-1 , 2021), a small sample of remains unearthed from VM4, an excavation quarry ~ 350 m distant from VM3, is analysed. The authors indicate several differences in the taphonomic features of this assemblage with VM3, and even suggest that a different carnivore could have been the agent involved in the bone accumulation process. Here, we make a comparative analysis of both quarries and analyse more skeletal remains from VM4. Our results indicate that the assemblages are broadly similar in composition, except for slight differences in the frequency of megaherbivores, carnivores and equids according to NISP values (but not to MNI counts), the degree of bone weathering, and the intensity of bone processing by the hyaenas. Given that VM4 and VM3 were not coeval denning areas of P. brevirostris, these differences suggest that during the years when the skeletal remains were accumulated by the hyaenas at VM3, the rise of the water table of the Baza palaeolake that capped with limestone the bones was delayed compared to VM4, which resulted in their more in-depth consumption by the hyaenas.

10.
Article in Spanish | LILACS, BINACIS | ID: biblio-1358111

ABSTRACT

Introducción: Se presenta un caso clínico de seudoaneurisma de la arteria femoral circunfleja lateral secundario a una fractura pertrocantérica de cadera. Materiales y métodos: Como el cuadro y su localización son infrecuentes, se llevó a cabo una revisión bibliográfica sistematizada que incluyó todos los casos publicados sobre esta enfermedad (n = 40) en los últimos 15 años. Resultados: No se hallaron asociaciones estadísticamente significativas entre ninguna de las variables estudiadas. Sin embargo, parece existir cierto consenso en mantener una alta sospecha clínica para una intervención precoz y así obtener mejores resultados. Tanto su etiología como su localización se relacionan con la morfología de la fractura, el gesto quirúrgico y el material de osteosíntesis. Asimismo, hay una tendencia mayor a utilizar la angiotomografía para el diagnóstico y la localización del seudoaneurisma. Conclusiones: Nuestra paciente es el primer caso de resolución espontánea. Es fundamental conocer esta complicación tan poco frecuente para optimizar los resultados terapéuticos. Esta revisión, la más reciente sobre el tema, es muy útil para enumerar y subrayar los aspectos más importantes sobre el manejo y la prevención de los seudoaneurismas secundarios a una fractura de cadera. Nivel de Evidencia: IV


Introduction: We present a case of a lateral circumflex femoral artery pseudoaneurysm associated with pertrochanteric hip fracture. Materials and methods: We performed a systematic review considering all cases published in the last 15 years about this pathology (n=40). Results: No statistically significant associations were found between any of the variables studied. However, there seems to be some consensus in maintaining a high clinical suspicion for early intervention, thus obtaining better outcomes. Both its etiology and location are related to the morphology of the fracture, the surgical procedure, and the osteosynthesis material. Likewise, there is a greater tendency to use CT angiography for the diagnosis and localization of the pseudoaneurysm. Conclusion: Our patient is the first reported case of spontaneous resolution. Knowing this rare complication is essential to optimize therapeutic results. This review, the most recent on the subject, is very useful in listing and highlighting the most important aspects of the management and prevention of pseudoaneurysms secondary to hip fracture. Level of Evidence: IV


Subject(s)
Aneurysm, False , Femoral Artery , Hip Fractures
11.
Sci Rep ; 11(1): 22437, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34789787

ABSTRACT

Despite the paleontological relevance of the terrestrial Early Pleistocene Venta Micena bonebed (Baza Basin, Spain), it lacks a comprehensive geochemical/sedimentological study. Here, we demonstrate that the 1.5-m-thick Venta Micena limestone formed in a relatively small freshwater wetland/pond located at the periphery of the large saline Baza paleolake. Two microfacies are observed, with high and low contents of invertebrate fossils, and which originated in the centre and margin of the wetland, respectively. X-ray diffraction (XRD) mineralogy and paleohydrological characterization based on ostracod and bulk-rock geochemistry (δ13C and δ18O) indicate that the limestone reflects a general lowstand of the Baza lake, permitting the differentiation of freshwater wetlands that were fed by adjacent sources. Conversely, during highstands, the Baza lake flooded the Venta Micena area and the freshwater fauna was replaced by a saline one. Bulk-rock isotopic data indicate that the lower interval C1 of the limestone (bone-rich in marginal settings) displays general negative values, while the upper interval C2 (bone free) displays less negative values. The bones of predated mammals accumulated in the marginal areas, which were flooded and buried by recurring water-table fluctuations. Lake dynamics played a critical role in bone accumulation, which was previously considered as representing a hyena den.

12.
Sci Rep ; 11(1): 17127, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429470

ABSTRACT

There has been a significant rise in robotic trajectory guidance devices that have been utilised for stereotactic neurosurgical procedures. These devices have significant costs and associated learning curves. Previous studies reporting devices usage have not undertaken prospective parallel-group comparisons before their introduction, so the comparative differences are unknown. We study the difference in stereoelectroencephalography electrode implantation time between a robotic trajectory guidance device (iSYS1) and manual frameless implantation (PAD) in patients with drug-refractory focal epilepsy through a single-blinded randomised control parallel-group investigation of SEEG electrode implantation, concordant with CONSORT statement. Thirty-two patients (18 male) completed the trial. The iSYS1 returned significantly shorter median operative time for intracranial bolt insertion, 6.36 min (95% CI 5.72-7.07) versus 9.06 min (95% CI 8.16-10.06), p = 0.0001. The PAD group had a better median target point accuracy 1.58 mm (95% CI 1.38-1.82) versus 1.16 mm (95% CI 1.01-1.33), p = 0.004. The mean electrode implantation angle error was 2.13° for the iSYS1 group and 1.71° for the PAD groups (p = 0.023). There was no statistically significant difference for any other outcome. Health policy and hospital commissioners should consider these differences in the context of the opportunity cost of introducing robotic devices.Trial registration: ISRCTN17209025 ( https://doi.org/10.1186/ISRCTN17209025 ).


Subject(s)
Deep Brain Stimulation/methods , Electrodes, Implanted , Epilepsy/therapy , Postoperative Complications/epidemiology , Robotic Surgical Procedures/methods , Adult , Aged , Deep Brain Stimulation/adverse effects , Deep Brain Stimulation/instrumentation , Female , Humans , Male , Middle Aged , Robotic Surgical Procedures/adverse effects , Robotic Surgical Procedures/instrumentation
13.
Cell Syst ; 12(8): 810-826.e4, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34146472

ABSTRACT

The recent advent of CRISPR and other molecular tools enabled the reconstruction of cell lineages based on induced DNA mutations and promises to solve the ones of more complex organisms. To date, no lineage reconstruction algorithms have been rigorously examined for their performance and robustness across dataset types and number of cells. To benchmark such methods, we decided to organize a DREAM challenge using in vitro experimental intMEMOIR recordings and in silico data for a C. elegans lineage tree of about 1,000 cells and a Mus musculus tree of 10,000 cells. Some of the 22 approaches submitted had excellent performance, but structural features of the trees prevented optimal reconstructions. Using smaller sub-trees as training sets proved to be a good approach for tuning algorithms to reconstruct larger trees. The simulation and reconstruction methods here generated delineate a potential way forward for solving larger cell lineage trees such as in mouse.


Subject(s)
Benchmarking , Caenorhabditis elegans , Algorithms , Animals , Caenorhabditis elegans/genetics , Cell Lineage/genetics , Computer Simulation , Mice
14.
Science ; 372(6538)2021 04 09.
Article in English | MEDLINE | ID: mdl-33833095

ABSTRACT

During multicellular development, spatial position and lineage history play powerful roles in controlling cell fate decisions. Using a serine integrase-based recording system, we engineered cells to record lineage information in a format that can be read out in situ. The system, termed integrase-editable memory by engineered mutagenesis with optical in situ readout (intMEMOIR), allowed in situ reconstruction of lineage relationships in cultured mouse cells and flies. intMEMOIR uses an array of independent three-state genetic memory elements that can recombine stochastically and irreversibly, allowing up to 59,049 distinct digital states. It reconstructed lineage trees in stem cells and enabled simultaneous analysis of single-cell clonal history, spatial position, and gene expression in Drosophila brain sections. These results establish a foundation for microscopy-readable lineage recording and analysis in diverse systems.


Subject(s)
Cell Lineage , Gene Expression , Mouse Embryonic Stem Cells/cytology , Neurons/cytology , Single-Cell Analysis , Animals , Brain/cytology , Cell Line , Clone Cells/cytology , Drosophila melanogaster/cytology , Drosophila melanogaster/embryology , Gene Expression Profiling , Heat-Shock Response , In Situ Hybridization, Fluorescence , Integrases/metabolism , Mice , Mutagenesis , Spatial Analysis , Time-Lapse Imaging , Transcription, Genetic
15.
Int J Comput Assist Radiol Surg ; 16(5): 789-798, 2021 May.
Article in English | MEDLINE | ID: mdl-33761063

ABSTRACT

PURPOSE : Electrode bending observed after stereotactic interventions is typically not accounted for in either computer-assisted planning algorithms, where straight trajectories are assumed, or in quality assessment, where only metrics related to entry and target points are reported. Our aim is to provide a fully automated and validated pipeline for the prediction of stereo-electroencephalography (SEEG) electrode bending. METHODS : We transform electrodes of 86 cases into a common space and compare features-based and image-based neural networks on their ability to regress local displacement ([Formula: see text]) or electrode bending ([Formula: see text]). Electrodes were stratified into six groups based on brain structures at the entry and target point. Models, both with and without Monte Carlo (MC) dropout, were trained and validated using tenfold cross-validation. RESULTS : mage-based models outperformed features-based models for all groups, and models that predicted [Formula: see text] performed better than for [Formula: see text]. Image-based model prediction with MC dropout resulted in lower mean squared error (MSE) with improvements up to 12.9% ([Formula: see text]) and 39.9% ([Formula: see text]), compared to no dropout. Using an image of brain tissue types (cortex, white and deep grey matter) resulted in similar, and sometimes better performance, compared to using a T1-weighted MRI when predicting [Formula: see text]. When inferring trajectories of image-based models (brain tissue types), 86.9% of trajectories had an MSE[Formula: see text] mm. CONCLUSION : An image-based approach regressing local displacement with an image of brain tissue types resulted in more accurate electrode bending predictions compared to other approaches, inputs, and outputs. Future work will investigate the integration of electrode bending into planning and quality assessment algorithms.


Subject(s)
Electrodes, Implanted , Electroencephalography/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Neurosurgery/instrumentation , Neurosurgery/methods , Radiosurgery/methods , Algorithms , Brain/diagnostic imaging , Brain/surgery , Humans , Machine Learning , Monte Carlo Method , Surgery, Computer-Assisted
16.
Int J Comput Assist Radiol Surg ; 16(1): 141-150, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33165705

ABSTRACT

PURPOSE: Estimation of brain deformation is crucial during neurosurgery. Whilst mechanical characterisation captures stress-strain relationships of tissue, biomechanical models are limited by experimental conditions. This results in variability reported in the literature. The aim of this work was to demonstrate a generative model of strain energy density functions can estimate the elastic properties of tissue using observed brain deformation. METHODS: For the generative model a Gaussian Process regression learns elastic potentials from 73 manuscripts. We evaluate the use of neo-Hookean, Mooney-Rivlin and 1-term Ogden meta-models to guarantee stability. Single and multiple tissue experiments validate the ability of our generative model to estimate tissue properties on a synthetic brain model and in eight temporal lobe resection cases where deformation is observed between pre- and post-operative images. RESULTS: Estimated parameters on a synthetic model are close to the known reference with a root-mean-square error (RMSE) of 0.1 mm and 0.2 mm between surface nodes for single and multiple tissue experiments. In clinical cases, we were able to recover brain deformation from pre- to post-operative images reducing RMSE of differences from 1.37 to 1.08 mm on the ventricle surface and from 5.89 to 4.84 mm on the resection cavity surface. CONCLUSION: Our generative model can capture uncertainties related to mechanical characterisation of tissue. When fitting samples from elastography and linear studies, all meta-models performed similarly. The Ogden meta-model performed the best on hyperelastic studies. We were able to predict elastic parameters in a reference model on a synthetic phantom. However, deformation observed in clinical cases is only partly explained using our generative model.


Subject(s)
Brain/surgery , Models, Neurological , Neurosurgical Procedures/methods , Stress, Mechanical , Biomechanical Phenomena , Elasticity , Elasticity Imaging Techniques , Humans , Phantoms, Imaging
17.
Front Neurol ; 11: 706, 2020.
Article in English | MEDLINE | ID: mdl-32765411

ABSTRACT

Objective: Stereoelectroencephalography (SEEG) is a procedure in which many electrodes are stereotactically implanted within different regions of the brain to estimate the epileptogenic zone in patients with drug-refractory focal epilepsy. Computer-assisted planning (CAP) improves risk scores, gray matter sampling, orthogonal drilling angles to the skull and intracerebral length in a fraction of the time required for manual planning. Due to differences in planning practices, such algorithms may not be generalizable between institutions. We provide a prospective validation of clinically feasible trajectories using "spatial priors" derived from previous implantations and implement a machine learning classifier to adapt to evolving planning practices. Methods: Thirty-two patients underwent consecutive SEEG implantations utilizing computer-assisted planning over 2 years. Implanted electrodes from the first 12 patients (108 electrodes) were used as a training set from which entry and target point spatial priors were generated. CAP was then prospectively performed using the spatial priors in a further test set of 20 patients (210 electrodes). A K-nearest neighbor (K-NN) machine learning classifier was implemented as an adaptive learning method to modify the spatial priors dynamically. Results: All of the 318 prospective computer-assisted planned electrodes were implanted without complication. Spatial priors developed from the training set generated clinically feasible trajectories in 79% of the test set. The remaining 21% required entry or target points outside of the spatial priors. The K-NN classifier was able to dynamically model real-time changes in the spatial priors in order to adapt to the evolving planning requirements. Conclusions: We provide spatial priors for common SEEG trajectories that prospectively integrate clinically feasible trajectory planning practices from previous SEEG implantations. This allows institutional SEEG experience to be incorporated and used to guide future implantations. The deployment of a K-NN classifier may improve the generalisability of the algorithm by dynamically modifying the spatial priors in real-time as further implantations are performed.

18.
J Neurosci Methods ; 340: 108710, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32339522

ABSTRACT

BACKGROUND: Implantation accuracy of electrodes during neurosurgical interventions is necessary to ensure safety and efficacy. Typically, metrics are computed by visual inspection which is tedious, prone to inter-/intra-observer variation, and difficult to replicate across sites. NEW METHOD: We propose an automated approach for computing implantation metrics and investigate potential sources of error. We focus on accuracy metrics commonly reported in the literature to validate our approach against metrics computed manually including entry point (EP) and target point (TP) localisation errors and angle differences between planned and implanted trajectories in 15 patients with a total of 158 stereoelectroencephalography (SEEG) electrodes. We evaluate the effect of line-of-best-fit approaches, EP definition and lateral versus Euclidean distance on metrics to provide recommendations for reporting implantation accuracy metrics. RESULTS: We found no bias between manual and automated approaches for calculating accuracy metrics with limits of agreement of ±1 mm and ±1°. Automated metrics are robust to sources of errors including registration and electrode bending. We observe the highest error in EP deviations of µâ€¯= 0.25 mm when the post-implantation CT is used to define the point of entry. COMPARISON WITH EXISTING METHOD(S): We found no reports of automated approaches for quality assessment of SEEG electrode implantation. Neither the choice of metrics nor the possible errors that could occur have been investigated previously. CONCLUSIONS: Our automated approach is useful to avoid human errors, unintentional bias and variation that may be introduced when manually computing metrics. Our work is relevant and timely to facilitate comparisons of studies reporting implantation accuracy.


Subject(s)
Benchmarking , Electroencephalography , Brain/diagnostic imaging , Brain/surgery , Electrodes, Implanted , Humans , Stereotaxic Techniques
19.
IEEE Trans Biomed Eng ; 67(10): 2798-2805, 2020 10.
Article in English | MEDLINE | ID: mdl-32031926

ABSTRACT

Better understanding of palpation techniques during unsighted physical examinations has mostly been limited to qualitative and quantitative studies of performance of experts whilst conducting examinations on plastic benchtop models. However, little is known about their performance when conducting such examinations on real subjects. OBJECTIVE: The aim of this paper is to better understand palpation techniques of experts whilst conducting a Digital Rectal Examination on a real subject. METHODS: We recruited four consultants from relevant specialties and asked them to conduct two DREs on a Rectal Teaching Assistant whilst wearing small position and pressure sensors on their examining finger. We segmented the relevant anatomy from an MRI taken of the pelvic region, registered 3D models and analysed retrospectively performance in relation to executed tasks, supination/pronation, palpation convex hull and pressure applied. RESULTS: Primary care consultants examined the anatomy more holistically compared to secondary care experts, the maximum pressure applied across experiments is 3.3N, overall the pressure applied on the prostate is higher than that applied to rectal walls, and the urologist participant not only applied the highest pressure but also did so with the highest most prominent frequency (15.4 and 25.3 Hz). CONCLUSIONS: The results of our research allow for better understanding of experts' technical performance from relevant specialities when conducting a DRE, and suggest the range of pressure applied whilst palpating anatomy. SIGNIFICANCE: This research will be valuable in improving the design of haptics-based learning tools, as well as in encouraging reflection on palpation styles across different specialities to develop metrics of performance.


Subject(s)
Digital Rectal Examination , Prostatic Neoplasms , Humans , Male , Palpation , Prostate , Retrospective Studies
20.
Neurotherapeutics ; 16(1): 182-191, 2019 01.
Article in English | MEDLINE | ID: mdl-30520003

ABSTRACT

Laser interstitial thermal therapy (LITT) is an alternative to open surgery for drug-resistant focal mesial temporal lobe epilepsy (MTLE). Studies suggest maximal ablation of the mesial hippocampal head and amygdalohippocampal complex (AHC) improves seizure freedom rates while better neuropsychological outcomes are associated with sparing of the parahippocampal gyrus (PHG). Optimal trajectories avoid sulci and CSF cavities and maximize distance from vasculature. Computer-assisted planning (CAP) improves these metrics, but the combination of entry and target zones has yet to be determined to maximize ablation of the AHC while sparing the PHG. We apply a machine learning approach to predict entry and target parameters and utilize these for CAP. Ten patients with hippocampal sclerosis were identified from a prospectively managed database. CAP LITT trajectories were generated using entry regions that include the inferior occipital, middle occipital, inferior temporal, and middle temporal gyri. Target points were varied by sequential AHC erosions and transformations of the centroid of the amygdala. A total of 7600 trajectories were generated, and ablation volumes of the AHC and PHG were calculated. Two machine learning approaches (random forest and linear regression) were investigated to predict composite ablation scores and determine entry and target point combinations that maximize ablation of the AHC while sparing the PHG. Random forest and linear regression predictions had a high correlation with the calculated values in the test set (ρ = 0.7) for both methods. Maximal composite ablation scores were associated with entry points around the junction of the inferior occipital, middle occipital, and middle temporal gyri. The optimal target point was the anteromesial amygdala. These parameters were then used with CAP to generate clinically feasible trajectories that optimize safety metrics. Machine learning techniques accurately predict composite ablation score. Prospective studies are required to determine if this improves seizure-free outcome while reducing neuropsychological morbidity following LITT for MTLE.


Subject(s)
Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/therapy , Laser Therapy/methods , Drug Resistant Epilepsy/therapy , Humans , Machine Learning , Magnetic Resonance Imaging/methods , Surgery, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...