Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biometals ; 32(5): 803-811, 2019 10.
Article in English | MEDLINE | ID: mdl-31549273

ABSTRACT

Sulfate-reducing bacteria have been suggested to have an etiological role in the development of inflammatory bowel diseases and ulcerative colitis in humans. Traditionally. bismuth compounds have been administered to alleviate gastrointestinal discomfort and disease symptoms. One mechanism by which this treatment occurs is through binding bacterial derived hydrogen sulfide in the intestines. With the addition of bismuth-deferiprone, bismuth-citrate and bismuth subsalicylate to reactions containing cells of D. desulfuricans ATCC 27774, the oxidation of H2 with sulfate as the electron acceptor was inhibited but H2 oxidation with nitrate, nitrite and sulfite was not reduced. Our research suggests that a target for bismuth inhibition of D. desulfuricans is the F1 subunit of the ATP synthase and, thus, dissimilatory sulfate reduction does not occur. At sublethal concentrations, bismuth as Bi(III) is precipitated by hydrogen sulfide produced from respiratory sulfate reduction by D. desulfuricans. Nanocrystals of bismuth sulfide were determined to be Bi2S3 through the use of high resolution transmission electron microscopy imaging with X-ray energy-dispersive spectroscopy analysis. In the absence of sulfate, D. desulfuricans oxidizes H2 with the reduction of Bi(III) to Bi0 and this was also established by X-ray energy-dispersive spectroscopy analysis.


Subject(s)
Bismuth/chemistry , Nanoparticles/chemistry , Adenosine Triphosphatases/metabolism , Anaerobiosis , Bismuth/pharmacology , Desulfovibrio desulfuricans/drug effects , Microbial Sensitivity Tests
2.
Biometals ; 29(2): 311-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26896170

ABSTRACT

Sulfate-reducing bacteria have been implicated in inflammatory bowel diseases and ulcerative colitis in humans and there is an interest in inhibiting the growth of these sulfide-producing bacteria. This research explores the use of several chelators of bismuth to determine the most effective chelator to inhibit the growth of sulfate-reducing bacteria. For our studies, Desulfovibrio desulfuricans ATCC 27774 was grown with nitrate as the electron acceptor and chelated bismuth compounds were added to test for inhibition of growth. Varying levels of inhibition were attributed to bismuth chelated with subsalicylate or citrate but the most effective inhibition of growth by D. desulfuricans was with bismuth chelated by deferiprone, 3-hydroxy-1,2-dimethyl-4(1H)-pyridone. Growth of D. desulfuricans was inhibited by 10 µM bismuth as deferiprone:bismuth with either nitrate or sulfate respiration. Our studies indicate deferiprone:bismuth has bacteriostatic activity on D. desulfuricans because the inhibition can be reversed following exposure to 1 mM bismuth for 1 h at 32 °C. We suggest that deferiprone is an appropriate chelator for bismuth to control growth of sulfate-reducing bacteria because deferiprone is relatively nontoxic to animals, including humans, and has been used for many years to bind Fe(III) in the treatment of ß-thalassemia.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bismuth/pharmacology , Coordination Complexes/pharmacology , Desulfovibrio/growth & development , Pyridones/pharmacology , Deferiprone , Desulfovibrio/drug effects , Edetic Acid/pharmacology , Iron Chelating Agents/pharmacology , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...