Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 635: 122777, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36842518

ABSTRACT

A synthetic and thermo-responsive polymer, poly(N-isopropylacrylamide)-co-(polylactide/2-hydroxy methacrylate)-co-(oligo (ethylene glycol)), is used to formulate a universal carrier platform for sustained drug release. The enabling carrier, denoted as TP, is prepared by dissolving the polymer in an aqueous solution at a relatively neutral pH. A wide range of therapeutic moieties can be incorporated without the need for the addition of surfactants, organic solvents, and other reagents to the carrier system. The resulting solution is flowable through fine gauge needle, allowing accurate administration of TP to the target site. After injection, TP carrier undergoes a coil to globe phase transition to form a hydrogel matrix at the site. The benign nature of the polymer carrier and its physical gelation process are essential to preserve the biological activity of the encapsulated compounds while the adhesive hydrogel nature of the matrix allows sustained elusion and controlled delivery of the incorporated therapeutics. The TP carrier system has been shown to be non-toxic and elicits a minimal inflammatory response in multiple in vitro studies. These findings suggest the suitability of TP as an enabling carrier of therapeutics for localized and sustained drug delivery. To confirm this hypothesis, the capabilities of TP to encapsulate and effectively deliver multiple therapeutics of different physicochemical characteristics was evaluated. Specifically, a broad range of compounds were tested, including ciprofloxacin HCl, tumor necrosis factor-alpha (TNF-α), transforming growth factor beta 1 (TGF-ß1), and recombinant human bone morphogenetic protein 2 (BMP2). In vitro studies confirmed that TP carrier is able to control the release of the encapsulated drugs over an extended period of time and mitigate their burst release regardless of the compounds' physiochemical properties for the majority of the loaded therapeutics. Importantly, in vitro and in vivo animal studies showed that the released drugs from the TP hydrogel matrix remained potent and bioactive, confirming the high potential of the TP polymer system as an enabling carrier.


Subject(s)
Hydrogels , Synthetic Drugs , Animals , Humans , Hydrogels/chemistry , Polyethylene Glycols/chemistry , Drug Delivery Systems , Polymers/chemistry
2.
Drug Deliv Transl Res ; 13(5): 1405-1419, 2023 05.
Article in English | MEDLINE | ID: mdl-36786980

ABSTRACT

To simulate the deposition of drugs in the oro-pharynx region, several in vitro models are available such as the United States Pharmacopeia-Induction Port (USP-IP) throat and the Virginia Commonwealth University (VCU) models. However, currently, there is no such in vitro model that incorporates a biological barrier to elucidate drug transport across the pharyngeal cells. Cellular models such as in vitro air-liquid interface (ALI) models of human respiratory epithelial cell lines are extensively used to study drug transport. To date, no studies have yet been performed to optimise the ALI culture conditions of the human pharyngeal cell line Detroit 562 and determine whether it could be used for drug transport. Therefore, this study aimed to develop a novel 3D-printed throat model integrated with an ALI cellular model of Detroit 562 cells and optimise the culture conditions to investigate whether the combined model could be used to study drug transport, using Lidocaine as a model drug. Differentiating characteristics specific to airway epithelia were assessed using 3 seeding densities (30,000, 60,000, and 80,000 cells/well (c/w), respectively) over 21 days. The results showed that Detroit 562 cells completely differentiates on day 18 of ALI for both 60,000 and 80,000 c/w with significant mucus production, showing response to bacterial and viral stimuli and development of functional tight junctions and Lidocaine transport with no significant differences observed between the ALI models with the 2 cell seeding densities. Results showed the suitability of the Low density (60,000 c/w or 1.8 × 105 cells/cm2) ALI model to study drug transport. Importantly, the developed novel 3D-printed throat model integrated with our optimised in vitro Detroit 562 ALI model showed transport of Lidocaine throat spray. Overall, the study highlights the potential of the novel 3D-printed bio-throat integrated model as a promising in vitro system to investigate the transport of inhalable drug therapies targeted at the oro-pharyngeal region.


Subject(s)
Nebulizers and Vaporizers , Pharynx , Humans , Cell Line , Epithelial Cells , Printing, Three-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL
...