Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Res ; 36(17): 4515-4519, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34662532

ABSTRACT

The amount of pectin in the cell wall is considered a critical element regulating cell wall porosity. Thus, it is likely to influence the diffusional processes particularly that from the substomatal cavities to the carboxylation sites in the chloroplast stroma (i.e. mesophyll conductance, gm). We analyzed in four deciduous species (Acer campestre, Crateaugus monogyna, Corylus avellana, Quercus robur) the correlation between pectin and gm in two phase of leaves development (i.e. mature green leaves and senescent leaves). Results showed that in A. campestre, C. monogyna and Q. robur to higher value of pectin in mature green leaves corresponded the higher gm value. Taking into account this result, we can assume that a higher amount of pectins is associated to an increased cell wall hydrophilicity and elasticity, thus increasing gm because CO2 molecules cross the wall dissolved in water. An opposite behavior was observed in C. avellana.


Subject(s)
Mesophyll Cells , Photosynthesis , Carbon Dioxide , Forests , Mesophyll Cells/physiology , Pectins , Plant Leaves/physiology
2.
Physiol Mol Biol Plants ; 26(2): 261-270, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32158133

ABSTRACT

Mesophyll conductance (g m) has received over time much less attention than stomatal conductance (g s), although it affects leaf photosynthesis to about the same extent as stomatal conductance does. The objective of this study was to analyze the g m trend in five understory herbaceous species growing in a close-canopy forest in the north-west of Italy. In particular, three of analyzed species were monocots: Carex brizoides Lam., Carex pilosa Scop., and Oplismenus undulatifolius P. Beauv and the others dicots species: Circaea lutetiana L., and Pulmonaria officinalis Ced. The results showed, on one hand, the absence of correlation between g m and the considered environmental variables in the forest understory (i.e. air temperature, photosynthetic photon flux density and carbon dioxide concentration). Moreover, we carried out a principal component analysis considering all the analyzed morphological and physiological variables for the five species. The following correlation between the first component, related to the leaf mass per unit of leaf area and the leaf tissue density, and g m seem to suggest a key role of the leaf structural features in determining g m variations across the five species.

SELECTION OF CITATIONS
SEARCH DETAIL
...