Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Environ Sci Pollut Res Int ; 27(1): 366-378, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31788732

ABSTRACT

The use of cork granules for cleaning up crude oil or oil derivative spills and further oil recovery appears as a promising option due to their unique properties, which allow a high oil sorption capacity, low water pickup and excellent reuse. The present work reports the effect of oil viscosity on cork sorption capacity by using five types of oils (lubricating oil, 5.7 goil gcork-1; heavy oil, 4.2 goil gcork-1; light oil, 3.0 goil gcork-1; biodiesel, 2.6 goil gcork-1; and diesel, 2.0 goil gcork-1). The cork sorption capacity for light petroleum was also evaluated as a function of temperature and sorbent particle size. Additionally, improvements on oil recovery from cork sorbents by a mechanical compression process have been achieved as a result of a design of experiments (DOE) using the response surface methodology. Such statistical technique provided remarkable results in terms of cork sorbent reusability, as the oil sorption capacity was preserved after 30 cycles of sorption-squeezing steps. The sorbed oils could be removed from the sorbent surface, collected simply by squeezing the cork granules and further reused. The best operational region yielded near 80% oil recovery, using a cork mass of 8.85 g (particle size of 2.0-4.0 mm) loaded with 43.5 mL of lubricating oil, at 5.4 bar, utilising two compressions with a duration of 2 min each. Graphical abstract.


Subject(s)
Environmental Restoration and Remediation/methods , Petroleum Pollution/analysis , Petroleum , Water Pollutants, Chemical/analysis , Adsorption , Oils , Particle Size , Water , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...