Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Aerosp Med Hum Perform ; 91(6): 525-531, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32408937

ABSTRACT

INTRODUCTION: Aerospace orthostatic intolerance garments (OIG) have historically been pneumatic (e.g., NASA's antigravity suit), an approach that inhibits mobility and requires connection to an air supply. Elastic compression garments, an alternative technology, are difficult to don/doff and cannot be worn in a noncompressive state, resulting in discomfort and usability challenges. This research evaluates a novel technology-contractile shape memory alloy (SMA) knitted actuators-that can enable low-profile, dynamic compression for an aerospace OIG.METHODS: To characterize the functional capabilities of SMA knitted actuators, displacement control testing was conducted on 10 actuator samples with a range of geometric design parameters. Inactive (FI) and actuated forces (FA) were observed by repeatedly thermally cycling each sample at 0%, 15%, 30%, and 45% structural strain. Compression capabilities were approximated using medical compression hosiery standards and anthropometric data from a representative aerospace population (ANSUR 2012).RESULTS: Dynamic compression predictions reached 52 mmHg (single layer fabric) and 105 mmHg (double layer fabric) at the ankle. Low, inactive pressures (p < 20 mmHg) demonstrate that compression is controllable and can be dynamically increased upon actuation up to 33 mmHg in a single layer system and up to 67 mmHg in a double layer system.DISCUSSION: The results highlight the potential of SMA knitted actuators to enable low-profile, dynamic compression garments that can reach medically therapeutic pressures on an aerospace population to counteract OI symptoms. In addition to astronautic applications, this technology demonstrates widespread terrestrial medical and high-performance aircraft applicability.Granberry RM, Eschen KP, Ross AJ, Abel JM, Holschuh BT. Dynamic countermeasure fabrics for post-spaceflight orthostatic intolerance. Aerosp Med Hum Perform. 2020; 91(6):525-531.


Subject(s)
Gravity Suits , Orthostatic Intolerance/prevention & control , Protective Clothing , Space Flight , Aerospace Medicine , Astronauts , Equipment Design , Female , Humans , Male , Pressure
2.
Int Conf Environ Syst ; 492019 Jul 07.
Article in English | MEDLINE | ID: mdl-32572398

ABSTRACT

Active-contracting fabrics are an emerging innovation that could revolutionize aerospace compression garment technology, notably orthostatic intolerance garments (OIG), by contracting on demand. Prior research has found that active-contracting fabrics, specifically weft knit garter fabric architectures constructed with shape memory alloy (SMA) filaments, can apply 2-54 mmHg on the body (single-layer construction) or 4-104 mmHg (double layer construction), depending on body radius. Prior garment prototyping and performance validation efforts have been conducted with commercially available Flexinol® wire with an actuation finish temperature of 90°C, a temperature that is not appropriate proximal to the human body. While other chemistries of SMA having lower actuation temperatures used for medical devices inside the human body (Tcore ≈ 37°C) are commonly available, SMA has not been optimized for actuation control against the human skin (TS ≈ 31°C). This research characterizes and validates a novel SMA material designed by Fort Wayne Metals specifically for actuation adjacent to the surface of the body. Through experimental temperature-force-displacement testing on both Dynalloy Flexinol® and Fort Wayne Metals straight SMA wire and SMA knitted actuator configurations, we present data that suggests (1) performance differences between low-temperature, nickel-rich SMA (Fort Wayne Metals) and high-temperature, titanium-rich SMA (Dynalloy Flexinol®) are negated by certain SMA knitted actuator structures, and (2) certain SMA knitted actuator configurations increase in force upon cool down, offering new concepts for SMA system actuation/control that minimize power consumption and waste heat. This manuscript presents experimental evidence for a future OIG that is donned in an oversized and compliant state, heated momentarily above ambient skin temperature to initiate actuation, and remain fully 'activated' once the actuation is complete upon equilibration with skin temperature. The result is an OIG that requires low-operating power that could be doffed through zipper releases and placed in a sub-zero chamber to return the structure to the 'off' state for reuse.

SELECTION OF CITATIONS
SEARCH DETAIL