Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Humanit Soc Sci Commun ; 9(1): 223, 2022.
Article in English | MEDLINE | ID: mdl-35791377

ABSTRACT

Decades of techno-economic energy policymaking and research have meant evidence from the Social Sciences and Humanities (SSH)-including critical reflections on what changing a society's relation to energy (efficiency) even means-have been underutilised. In particular, (i) the SSH have too often been sidelined and/or narrowly pigeonholed by policymakers, funders, and other decision-makers when driving research agendas, and (ii) the setting of SSH-focused research agendas has not historically embedded inclusive and deliberative processes. The aim of this paper is to address these gaps through the production of a research agenda outlining future SSH research priorities for energy efficiency. A Horizon Scanning exercise was run, which sought to identify 100 priority SSH questions for energy efficiency research. This exercise included 152 researchers with prior SSH expertise on energy efficiency, who together spanned 62 (sub-)disciplines of SSH, 23 countries, and a full range of career stages. The resultant questions were inductively clustered into seven themes as follows: (1) Citizenship, engagement and knowledge exchange in relation to energy efficiency; (2) Energy efficiency in relation to equity, justice, poverty and vulnerability; (3) Energy efficiency in relation to everyday life and practices of energy consumption and production; (4) Framing, defining and measuring energy efficiency; (5) Governance, policy and political issues around energy efficiency; (6) Roles of economic systems, supply chains and financial mechanisms in improving energy efficiency; and (7) The interactions, unintended consequences and rebound effects of energy efficiency interventions. Given the consistent centrality of energy efficiency in policy programmes, this paper highlights that well-developed SSH approaches are ready to be mobilised to contribute to the development, and/or to understand the implications, of energy efficiency measures and governance solutions. Implicitly, it also emphasises the heterogeneity of SSH policy evidence that can be produced. The agenda will be of use for both (1) those new to the energy-SSH field (including policyworkers), for learnings on the capabilities and capacities of energy-SSH, and (2) established energy-SSH researchers, for insights on the collectively held futures of energy-SSH research.

2.
New Phytol ; 219(1): 350-362, 2018 07.
Article in English | MEDLINE | ID: mdl-29701262

ABSTRACT

Agrobacterium tumefaciens constructs an ecological niche in its host plant by transferring the T-DNA from its Ti plasmid into the host genome and by diverting the host metabolism. We combined transcriptomics and genetics for understanding the A. tumefaciens lifestyle when it colonizes Arabidopsis thaliana tumors. Transcriptomics highlighted: a transition from a motile to sessile behavior that mobilizes some master regulators (Hfq, CtrA, DivK and PleD); a remodeling of some cell surface components (O-antigen, succinoglucan, curdlan, att genes, putative fasciclin) and functions associated with plant defense (Ef-Tu and flagellin pathogen-associated molecular pattern-response and glycerol-3-phosphate and nitric oxide signaling); and an exploitation of a wide variety of host resources, including opines, amino acids, sugars, organic acids, phosphate, phosphorylated compounds, and iron. In addition, construction of transgenic A. thaliana lines expressing a lactonase enzyme showed that Ti plasmid transfer could escape host-mediated quorum-quenching. Finally, construction of knock-out mutants in A. tumefaciens showed that expression of some At plasmid genes seemed more costly than the selective advantage they would have conferred in tumor colonization. We provide the first overview of A. tumefaciens lifestyle in a plant tumor and reveal novel signaling and trophic interplays for investigating host-pathogen interactions.


Subject(s)
Agrobacterium tumefaciens/physiology , Agrobacterium tumefaciens/pathogenicity , Arabidopsis/microbiology , Host-Pathogen Interactions/physiology , Plant Tumors/microbiology , Agrobacterium tumefaciens/drug effects , Arabidopsis/genetics , Arabidopsis/metabolism , Arginine/analogs & derivatives , Arginine/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon/metabolism , Cell Wall/metabolism , Cell Wall/microbiology , Chemotaxis , Ecosystem , Gene Expression Regulation, Bacterial , Genome, Bacterial , Iron/metabolism , Mutation , Nitrogen/metabolism , Plants, Genetically Modified , Sugar Phosphates/pharmacology
3.
AMB Express ; 7(1): 138, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28655216

ABSTRACT

Root exudates are chemical compounds that are released from living plant roots and provide significant energy, carbon, nitrogen and phosphorus sources for microbes inhabiting the rhizosphere. The exudates shape the microflora associated with the plant, as well as influences the plant health and productivity. Therefore, a better understanding of the trophic link that is established between the plant and the associated bacteria is necessary. In this study, a comprehensive survey on the utilization of grapevine and rootstock related organic acids were conducted on a vineyard soil isolate which is Pseudomonas mendocina strain S5.2. Phenotype microarray analysis has demonstrated that this strain can utilize several organic acids including lactic acid, succinic acid, malic acid, citric acid and fumaric acid as sole growth substrates. Complete genome analysis using single molecule real-time technology revealed that the genome consists of a 5,120,146 bp circular chromosome and a 252,328 bp megaplasmid. A series of genetic determinants associated with the carbon utilization signature of the strain were subsequently identified in the chromosome. Of note, the coexistence of genes encoding several iron-sulfur cluster independent isoenzymes in the genome indicated the importance of these enzymes in the events of iron deficiency. Synteny and comparative analysis have also unraveled the unique features of D-lactate dehydrogenase of strain S5.2 in the study. Collective information of this work has provided insights on the metabolic role of this strain in vineyard soil rhizosphere.

4.
AMB Express ; 6(1): 95, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27730570

ABSTRACT

Trace metals are required in many cellular processes in bacteria but also induce toxic effects to cells when present in excess. As such, various forms of adaptive responses towards extracellular trace metal ions are essential for the survival and fitness of bacteria in their environment. A soil Pseudomonas putida, strain S13.1.2 has been isolated from French vineyard soil samples, and shown to confer resistance to copper ions. Further investigation revealed a high capacity to tolerate elevated concentrations of various heavy metals including nickel, cobalt, cadmium, zinc and arsenic. The complete genome analysis was conducted using single-molecule real-time (SMRT) sequencing and the genome consisted in a single chromosome at the size of 6.6 Mb. Presence of operons and gene clusters such as cop, cus, czc, nik, and asc systems were detected and accounted for the observed resistance phenotypes. The unique features in terms of specificity and arrangements of some genetic determinants were also highlighted in the study. Our findings has provided insights into the adaptation of this strain to accumulation and persistence of copper and other heavy metals in vineyard soil environment.

5.
J Genomics ; 4: 26-8, 2016.
Article in English | MEDLINE | ID: mdl-27512520

ABSTRACT

Pseudomonas lini strain ZBG1 was isolated from the soil of vineyard in Zellenberg, France and the draft genome was reported in this study. Bioinformatics analyses of the genome revealed presence of genes encoding tartaric and malic acid utilization as well as copper resistance that correspond to the adaptation this strain in vineyard soil environment.

6.
Trends Plant Sci ; 21(3): 266-278, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26818718

ABSTRACT

All components of the rhizosphere can be engineered to promote plant health and growth, two features that strongly depend upon the interactions of living organisms with their environment. This review describes the progress in plant and microbial molecular genetics and ecology that has led to a wealth of potential applications. Recent efforts especially deal with the plant defense machinery that is instrumental in engineering plant resistance to biotic stresses. Another approach involves microbial population engineering rather than single strain engineering. More generally, the plants (and the associated microbes) are no longer seen as 'individual' but rather as a holobiont, in other words a unit of selection in evolution, a concept that holds great promise for future plant breeding programs.


Subject(s)
Botany/methods , Rhizosphere , Microbiota , Plants/microbiology , Soil , Soil Microbiology
7.
FEMS Microbiol Rev ; 40(1): 86-116, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26432822

ABSTRACT

Quorum sensing (QS) refers to the capacity of bacteria to monitor their population density and regulate gene expression accordingly: the QS-regulated processes deal with multicellular behaviors (e.g. growth and development of biofilm), horizontal gene transfer and host-microbe (symbiosis and pathogenesis) and microbe-microbe interactions. QS signaling requires the synthesis, exchange and perception of bacterial compounds, called autoinducers or QS signals (e.g. N-acylhomoserine lactones). The disruption of QS signaling, also termed quorum quenching (QQ), encompasses very diverse phenomena and mechanisms which are presented and discussed in this review. First, we surveyed the QS-signal diversity and QS-associated responses for a better understanding of the targets of the QQ phenomena that organisms have naturally evolved and are currently actively investigated in applied perspectives. Next the mechanisms, targets and molecular actors associated with QS interference are presented, with a special emphasis on the description of natural QQ enzymes and chemicals acting as QS inhibitors. Selected QQ paradigms are detailed to exemplify the mechanisms and biological roles of QS inhibition in microbe-microbe and host-microbe interactions. Finally, some QQ strategies are presented as promising tools in different fields such as medicine, aquaculture, crop production and anti-biofouling area.


Subject(s)
Bacterial Physiological Phenomena , Biofilms , Quorum Sensing/physiology , Acyl-Butyrolactones/metabolism , Bacteria/enzymology , Signal Transduction
8.
Genome Announc ; 3(6)2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26659682

ABSTRACT

Stenotrophomonas maltophilia ZBG7B was isolated from vineyard soil of Zellenberg, France. Here, we present the draft genome sequence of this bacterial strain, which has facilitated the prediction of function for several genes encoding biotechnologically important enzymes, such as xylosidase, xylanase, laccase, and chitinase.

9.
J Bacteriol ; 194(22): 6366, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23105092

ABSTRACT

Here we present the draft genome of Pseudomonas mendocina strain S5.2, possessing tolerance to a high concentration of copper. In addition to being copper resistant, the genome of P. mendocina strain S5.2 contains a number of heavy-metal-resistant genes known to confer resistance to multiple heavy-metal ions.


Subject(s)
Genome, Bacterial , Metals, Heavy/pharmacology , Pseudomonas mendocina/drug effects , Pseudomonas mendocina/genetics , Soil Microbiology , Agriculture , Animals , France , Molecular Sequence Data , Pseudomonas mendocina/classification , Vitis
10.
Evolution ; 61(1): 27-41, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17300425

ABSTRACT

We investigate the geographic pattern of adaptation of a fungal parasite, Colletotrichum lindemuthianum, on two host species, Phaseolus vulgaris and P. coccineus for two parasite fitness traits: infectivity (ability to attack a host individual) and aggressivity (degree of sporulation and leaf surface damage). Using a cross-inoculation experiment, we show specialization of the fungus on its host species of origin for both traits even when fungi, which originated from hosts growing in sympatry, were tested on sympatric host populations. Within the two host species, we compared infectivity and aggressivity on local versus allopatric plant-fungus combinations. We found evidence for local adaptation for the two traits on P. vulgaris but not on P. coccineus. There was no significant correlation between the degrees of local adaptation for infectivity and aggressivity, indicating that the genetic basis and the effect of selection may differ between these two traits. For the two fitness traits, a positive correlation between the degree of specialization and the degree of local adaptation was found, suggesting that specialization can be reinforced by local adaptation.


Subject(s)
Adaptation, Biological/physiology , Colletotrichum/pathogenicity , Phaseolus/microbiology , Selection, Genetic , Symbiosis , Adaptation, Biological/genetics , Analysis of Variance , Colletotrichum/physiology , Geography , Mexico , Reproducibility of Results , Species Specificity , Spores, Fungal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...