Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34444203

ABSTRACT

The Odiel River (SW Spain) is one of the most cited rivers in the scientific literature due to its high pollution degree, generated by more than 80 sulphide mines' (mostly unrestored) contamination in the Iberian Pyritic Belt (IPB), that have been exploited for more than 5000 years. Along the river and its tributaries, the physico-chemical parameters and diatoms, from 15 sampling points, were analyzed in the laboratory. Physico-chemical parameters, water chemical analysis, together with richness and Shannon-Wiener indexes were integrated in a matrix. An initial graphical treatment allowed the definition and proposal of a functioning system model, as well as the establishment of cause-effect relationships between pollution and its effects on biota. Then, the proposed model was statistically validated by factor analysis. For acidic pH waters, high values of Eh, TDS, sulphate, ∑REE and ∑Ficklin were found, while diatomologic indicators took low values. Thus, factor analysis was a very effective tool for graphical treatment validation as well as for pollution-biota interaction models' formulation, governed by two factors: AMD processes and water balance suffered by the studied river. As a novelty, the cause-effect relationships between high barium concentration and low diversity and richness were demonstrated in the IPB, for the first time.


Subject(s)
Diatoms , Water Pollutants, Chemical , Environmental Monitoring , Models, Statistical , Rivers , Spain , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
Article in English | MEDLINE | ID: mdl-33924929

ABSTRACT

The Odiel River Basin, located in the Iberian Pyrite Belt (IPB), is heavily affected by acid mine drainage (AMD), which occurs when pyritic minerals from sulfide mining areas are exposed to atmospheric, hydrological or biological weathering. This paper presents a hydrochemical characterization of parameters in the Odiel River Basin by means of Fuzzy Logic and data mining methodologies to determine the seasonal influence of AMD in polluted waters that have not been used before for a basin in this environmental area. This technique was proven to be effective, providing results that could not be achieved by using classic statistics, because it allows us to characterize the different parameters separately and also their relationships in waters affected by AMD in a qualitative manner based on the antecedents and according to the conditions (rules) imposed by the consequents (in this case, the Fe(II) and accumulated rainfall over 30 days). Thus, it was possible to confirm that hydrochemistry is greatly affected by seasonal changes, with a higher pH in the wet season (up to 8.59) compared to 2.12, the minimum pH value reached in the dry season. Accordingly, higher concentrations of most of the metals were observed in the dry season (e.g., up to 4000 mg/L of Fe (II)), with the exception of the values found after the first rains that occur in the early fall. With the use of the Fuzzy Logic technique, it was observed that, during the wet season, lixiviates with a higher Fe content have higher metal concentrations, and in the dry season, the behavior is the opposite.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Fuzzy Logic , Rivers , Seasons , Spain , Water Pollutants, Chemical/analysis
3.
Environ Sci Pollut Res Int ; 26(32): 33594-33606, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31587162

ABSTRACT

At the mouth of the Odiel River, within the Natural Area "Marismas del Odiel", there has been for years a collection of waste from different mining sites. In the present work, an approach has been made to the problem that this supposes, quantifying the pollutants that are poured into the estuary from the mineral collection located on the banks of the river. The study carried out has been able to determine high metal concentrations, comparable with any rubble from the upstream mines, with pH value of 1.66, lower than many other areas affected by acid mine drainage in the same river, and even with concentrations of Fe and As higher than those provided by the rest of the mining facilities of the Odiel basin. This can make us understand the serious situation of the Natural Park, where a great variety of birds and plants of special ecological interest are located.


Subject(s)
Environmental Monitoring , Mining , Water Pollutants, Chemical/analysis , Acids/analysis , Estuaries , Metals/analysis , Minerals , Rivers , Spain , UNESCO
SELECTION OF CITATIONS
SEARCH DETAIL
...