Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 922: 171362, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38428615

ABSTRACT

This research investigates the influence of water composition, the presence of seasonal algal mats, detrital inputs and the activity of microorganisms on the crystallization of aragonite in the sediments deposited in the hypersaline Laguna Honda wetland (S of Spain). The high alkaline and hypersaline waters (pH > 9.2 and C.E. > 70 mS/cm) of the wetland lake are rich in SO42- (>24,000 mg/l), Cl- (>21,000 mg/l), Na+ (>11,000 mg/l) Mg2+ (>8400 mg/l) and Ca2+ (>1000 mg/l), and are supersaturated for dolomite, calcite and aragonite. Sediments have lower pH values than column waters, oscillating from 8.54 in the low Eh (up to -80.9 mV) central deep sediments and 6.33 in the shallower higher Eh (around -13.6 mV) shore sediments. Erosion of the surrounding olive groves soils produced detrital silicates rich sediments with concretions of carbonate or sulfate. Aragonite (up to 19 %) and pyrite (up to 13 %) are mainly concentrated in the organic matter rich samples from the upper part of the sediment cores, whereas gypsum is preferably concentrated in low organic matter content samples. Mineral crusts containing a MgAl silicate phase, epsomite, halite and gypsum are precipitated on the floating algal mats covering the wetland waters. Floating algal mats deposit increased the organic matter content of the upper sediments which promoted the presence of fermentative microorganisms, sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) communities and variations of Eh that influence the authigenesis of carbonate and S-bearing minerals. Replacement of poorly crystalline MgSi phases infilling algal cells by aragonite was favored in the organic matter rich sediments with low Eh values and important SRB communities that promoted sulfate bioreduction processes to form pyrite. Aragonite precipitation was favored by the increase of carbonate and bicarbonate concentration produced by the SRB oxidation of organic matter, the CO2 degassing by high summer temperatures and the CO2 uptake by photosynthesis of the algal mats.

2.
Bioengineering (Basel) ; 10(3)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36978689

ABSTRACT

Plastic is a highly used material in various sectors. Due to its plentiful availability in the environment, microorganism surface contamination is a risk. The aim of this work is to achieve bactericidal capacity in plastics that reduces the microorganism's colonization risk and, consequently, reduces the chances of having an infection with E. coli and Listeria monocytogenes bacteria. Using polylactic acid (PLA) as the polymeric matrix, mixtures in concentrations of metal additive of ions of silver (Ag) R148 and S254 in 1% and 2% have been studied and manufactured. The materials are developed on an industrial scale through a process that proceeds as follows: (I) a mixture of polymer and additive in a double-screw compounder to obtain the compound in different concentrations, (II) the manufacture of filaments with a single-screw extruder, (III) 3D printing parts. Therefore, materials are evaluated in the form of powder, pellets and printed pieces to ensure their antibacterial effectiveness throughout the manufacturing process. The results of the research show antibacterial effectiveness for E. coli and Listeria monocytogenes of metal additives and polymeric compounds for all manufacturing phases on an industrial scale, with the effectiveness for additive R148 predominating at a concentration of 2%, demonstrating its microbial efficacy on surfaces with potential application in medicine.

3.
Polymers (Basel) ; 14(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36559902

ABSTRACT

The aim of this research work was the comparative study of the different properties of interest in the case of plastic materials for food use before and after being subjected to treatment by high hydrostatic pressure (HHP) as well as the impact of additivation with antimicrobials. This method of food preservation is currently on the rise and is of great interest because it is possible to extend the shelf life of many foods without the need for the use of additives or thermal processing, as is the case with other preservation methods currently used. The effects of HHP treatment (680 MPa for 8 min) on plastic materials commonly used in the food industry were studied. These materials, in sheet or film form, were polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS), multilayer polyethylene terephthalate-ethylene-vinyl alcohol copolymer-polyethylene (PET-EVOH-PE), multilayer polyethylene-polyethylene terephthalate (PE-PET), polyvinyl chloride aluminum (PVC-AL), and polylactic acid (PLA), which were provided by manufacturing companies in the sector. PE, PP, and PLA activated with tyrosol, zinc oxide, or zinc acetate were also tested. The phenomena and properties, such as overall migration, thermal behavior, oxygen barrier, and physical properties were analyzed before and after the process. The results show that the HHP process only slightly affected the properties of the materials. After pressurization, oxygen permeability increased greatly in PVC-AL (from 7.69 to 51.90) and decreased in PLA (from 8.77 to 3.60). The additivation of the materials caused a change in color and an increase in oxygen permeability. The additivated PE and PP showed migration values above the legal limit for certain simulants. The HHP treatment did not greatly affect the mechanical properties of the additivated materials. The main increases in the migration after HHP treatment were observed for PE activated with tyrosol or zinc oxide and for PS activated with zinc oxide. Activated PLA performed the best in the migration studies, irrespective of the HHP treatment. The results suggest that activated PLA could be used in HHP food processing as an inner antimicrobial layer in contact with the food packed in a container with the desired oxygen permeability barrier.

4.
Int J Food Microbiol ; 123(1-2): 38-49, 2008 Mar 31.
Article in English | MEDLINE | ID: mdl-18180067

ABSTRACT

A comparative study was carried out among enterococci isolated from fruits and vegetable foods, water and soil, and clinical samples. Results indicate strong differences in the numbers of enterococcal species found in different environments as well as their abundance. While Enterococcus faecalis was clearly the predominant species in clinical samples, Enterococcus faecium predominated in vegetables, and it slightly outnumbered E. faecalis in water samples. Other species (Enterococcus hirae, Enterococcus mundtii, Enterococcus durans, Enterococcus gallinarum and Enterococcus casseliflavus) were found more frequently in vegetables, water, and specially in soil. Isolates from vegetable foods showed a lower incidence of antibiotic resistance compared to clinical isolates for most antimicrobials tested, especially erythromycin, tetracycline, chloramphenicol, ciprofloxacin, levofloxacin, gentamicin and streptomycin for E. faecalis, and quinupristin/dalfopristin, ampicillin, penicillin, ciprofloxacin, levofloxacin, rifampicin, choramphenicol, gentamicin and nitrofurantoin for E. faecium. E. faecium isolates from vegetable foods and water showed an average lower number of antibiotic resistance traits (2.95 and 3.09 traits for vegetable and water isolates, respectively) compared to clinical samples (7.5 traits). Multi-resistant strains were also frequent among clinical E. faecalis isolates (5.46 traits on average). None of E. faecalis or E. faecium isolates from vegetable foods, water and soil showed beta-haemolytic activity, while 25.64% of clinical E. faecalis did. A 51.28% of E. faecalis clinical isolates tested positive for the cylA, cylB, cylM set of genes, while some or all of these genes were missing in the rest of isolates. In clinical E. faecalis and E. faecium isolates, the genetic determinants for the enterococcal surface protein gene (esp), the collagen adhesin gene (ace) and the sex pheromone gene ccf (as well as cob in E. faecalis) showed a clearly higher incidence compared to isolates from other sources. E. faecalis isolates from vegetable foods and water had much lower average numbers of virulence genetic determinants per strain (4.23 and 4.0, respectively) compared to clinical isolates (8.71). Similarly, among E. faecium the lowest average number of traits per strain occurred in vegetable food isolates (1.72) followed by water (3.9) and clinical isolates (4.73). Length heterogeneity (LH)-PCR typing with espF-aceF-ccfF and espF-ccfF primers revealed genomic groups that clearly differentiated clinical isolates from those of vegetable foods, water and soil (except for two clinical isolates). The large differences found in the incidence of antibiotic resistance and virulence factors and in the genetic fingerprints determined by LH-PCR suggest a clear separation of hospital-adapted populations of enterococci from those found in open environments.


Subject(s)
Drug Resistance, Bacterial , Enterococcus/genetics , Food Contamination/analysis , Food Microbiology , Genetic Variation , Anti-Bacterial Agents/pharmacology , Colony Count, Microbial , Consumer Product Safety , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial , Enterococcus/classification , Enterococcus/drug effects , Enterococcus/isolation & purification , Fruit/microbiology , Microbial Sensitivity Tests , Phylogeny , Polymerase Chain Reaction , Soil Microbiology , Species Specificity , Vegetables/microbiology , Virulence Factors/genetics , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...