Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Nutr ; 11: 1323336, 2024.
Article in English | MEDLINE | ID: mdl-38515523

ABSTRACT

Millets (defined here to also include sorghum) have been consumed in Asian and African countries for centuries, and have in recent years become increasingly popular in Western countries, especially because of their proven health and environmental benefits. Nevertheless, some concerns have been raised that their consumption can interfere with thyroid function and cause goiter. This systematic review aimed to investigate the link between millet consumption and goiter. We found nine papers that were relevant to this topic and included them in this review. Among nine papers eight were on pearl millet and one was on fonio millet. The findings of the review indicate that published literature on the association of pearl millet and increased goiter prevalence are not compelling and strong enough to assert that pearl millet consumed as part of a balanced diet can lead to goiter in the general population. To ensure appropriate factual messaging about millets, we need more scientific research to conclusively state whether millet consumption mediates goitrogenic effects.

2.
Front Plant Sci ; 12: 655406, 2021.
Article in English | MEDLINE | ID: mdl-33936140

ABSTRACT

Heading time in barley is considered a key developmental stage controlling adaptation to the environment and it affects grain yield; with the combination of agronomy (planting dates) and genetics being some of the determinants of adaptation to environmental conditions in order to escape late frost, heat, and terminal drought stresses. The objectives of this study are (i) to apply a gene-based characterization of 118 barley doubled haploid recombinants for vernalization, photoperiod, and earliness per se; (ii) use such information to quantify the optimal combination of genotype/sowing date that escapes extreme weather events; and (iii) how water and nitrogen management impact on grain yield. The doubled haploid barley genotypes with different allelic combinations for vernalization, photoperiod, and earliness per se were grown in eight locations across the Mediterranean basin. This information was linked with the crop growth model parameters. The photoperiod and earliness per se alleles modify the length of the phenological cycle, and this is more evident in combination with the recessive allele of the vernalization gene VRN-H2. In hot environments such as Algeria, Syria, and Jordan, early sowing dates (October 30 and December15) would be chosen to minimize the risk of exposing barley to heat stress. To maintain higher yields in the Mediterranean basin, barley breeding activities should focus on allelic combinations that have recessive VRN-H2 and EPS2 genes, since the risk of cold stress is much lower than the one represented by heat stress.

3.
J Exp Bot ; 72(14): 5158-5179, 2021 07 10.
Article in English | MEDLINE | ID: mdl-34021317

ABSTRACT

The CGIAR crop improvement (CI) programs, unlike commercial CI programs, which are mainly geared to profit though meeting farmers' needs, are charged with meeting multiple objectives with target populations that include both farmers and the community at large. We compiled the opinions from >30 experts in the private and public sector on key strategies, methodologies, and activities that could the help CGIAR meet the challenges of providing farmers with improved varieties while simultaneously meeting the goals of: (i) nutrition, health, and food security; (ii) poverty reduction, livelihoods, and jobs; (iii) gender equality, youth, and inclusion; (iv) climate adaptation and mitigation; and (v) environmental health and biodiversity. We review the crop improvement processes starting with crop choice, moving through to breeding objectives, production of potential new varieties, selection, and finally adoption by farmers. The importance of multidisciplinary teams working towards common objectives is stressed as a key factor to success. The role of the distinct disciplines, actors, and their interactions throughout the process from crop choice through to adoption by farmers is discussed and illustrated.


Subject(s)
Agriculture , Farmers , Humans
4.
iScience ; 23(12): 101815, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33305179

ABSTRACT

Climate change is one of the processes that have already overstepped the safe planetary boundaries, together with the rate of biodiversity loss and human interference with the nitrogen and phosphorus cycles. The three processes are related to agriculture and, as such, to both food safety and food security, and ultimately to human health. Adaptation to climate change is a difficult breeding objective because of its complexity, its unpredictability, and its location specificity. However, one strategy exists, which is based on a more dynamic use of agrobiodiversity in agriculture through the cultivation of evolutionary populations. In this review, we show how the translation into agricultural practice of nearly 100 years of research on evolutionary populations and mixtures is able to address the complexity of climate change while stabilizing yield, decreasing the use of most agrochemicals, thus reducing emissions and producing healthy food.

5.
PLoS One ; 13(6): e0198394, 2018.
Article in English | MEDLINE | ID: mdl-29856884

ABSTRACT

Pearl millet [Pennisetum glaucum (L.) R. Br.] is an important "orphan" cereal and the most widely grown of all the millet species worldwide. It is also the sixth most important cereal in the world after wheat, rice, maize, barley, and sorghum, being largely grown and used in West Africa as well as in India and Pakistan. The present study was carried out in the frame of a program designed to increase benefits and reduce potential health problems deriving from the consumption of pearl millet. The specific goal was to provide a database of information on the variability existing in pearl millet germplasm as to the amounts of phytate, the most relevant antinutrient compound, and the goitrogenic compounds C-glycosylflavones (C-GFs) accumulated in the grain.Results we obtained clearly show that, as indicated by the range in values, a substantial variability subsists across the investigated pearl millet inbred lines as regards the grain level of phytic acid phosphate, while the amount of C-GFs shows a very high variation. Suitable potential parents to be used in breeding programs can be therefore chosen from the surveyed material in order to create new germplasm with increased nutritional quality and food safety. Moreover, we report novel molecular data showing which genes are more relevant for phytic acid biosynthesis in the seeds as well as a preliminary analysis of a pearl millet orthologous gene for C-GFs biosynthesis. These results open the way to dissect the genetic determinants controlling key seed nutritional phenotypes and to the characterization of their impact on grain nutritional value in pearl millet.


Subject(s)
Antithyroid Agents , Food Safety/methods , Metabolic Networks and Pathways/genetics , Pennisetum , Phytic Acid , Antithyroid Agents/analysis , Antithyroid Agents/metabolism , Cenchrus/chemistry , Cenchrus/genetics , Cloning, Molecular , Edible Grain/chemistry , Edible Grain/genetics , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Pennisetum/chemistry , Pennisetum/genetics , Pennisetum/metabolism , Phenotype , Phytic Acid/analysis , Phytic Acid/metabolism , Plant Breeding
6.
Trends Plant Sci ; 22(10): 842-856, 2017 10.
Article in English | MEDLINE | ID: mdl-28716581

ABSTRACT

Increasing demand for nutritious, safe, and healthy food because of a growing population, and the pledge to maintain biodiversity and other resources, pose a major challenge to agriculture that is already threatened by a changing climate. Diverse and healthy diets, largely based on plant-derived food, may reduce diet-related illnesses. Investments in plant sciences will be necessary to design diverse cropping systems balancing productivity, sustainability, and nutritional quality. Cultivar diversity and nutritional quality are crucial. We call for better cooperation between food and medical scientists, food sector industries, breeders, and farmers to develop diversified and nutritious cultivars that reduce soil degradation and dependence on external inputs, such as fertilizers and pesticides, and to increase adaptation to climate change and resistance to emerging pests.


Subject(s)
Agriculture/methods , Conservation of Natural Resources , Crops, Agricultural , Diet, Healthy , Biodiversity , Climate Change , Fertilizers , Food Industry , Food Supply , Pesticides , Soil
7.
New Phytol ; 191(2): 564-578, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21443695

ABSTRACT

Barley is a model species for the investigation of the evolution, adaptation and spread of the world's important crops. In this article, we describe the first application of an oligonucleotide pool assay single nucleotide polymorphism (SNP) platform to assess the evolution of barley in a portion of the Fertile Crescent, a key region in the development of farming. A large collection of >1000 genetically mapped, genome-wide SNPs was assayed in geographically matched landrace and wild barley accessions (N=448) from Jordan and Syria. Landrace and wild barley categories were clearly genetically differentiated, but a limited degree of secondary contact was evident. Significant chromosome-level differences in diversity between barley types were observed around genes known to be involved in the evolution of cultivars. The region of Jordan and southern Syria, compared with the north of Syria, was supported by SNP data as a more likely domestication origin. Our data provide evidence for hybridization as a possible mechanism for the continued adaptation of landrace barley under cultivation, indicate regions of the genome that may be subject to selection processes and suggest limited origins for the development of the cultivated crop.


Subject(s)
Crops, Agricultural/genetics , Genome, Plant/genetics , Hordeum/genetics , Polymorphism, Single Nucleotide/genetics , Adaptation, Physiological , Chromosomes, Plant/genetics , DNA, Plant/genetics , Evolution, Molecular , Genes, Plant/genetics , Geography , Hybridization, Genetic , Jordan , Sequence Analysis, DNA , Syria
8.
Theor Appl Genet ; 120(6): 1207-18, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20041226

ABSTRACT

Leaf stripe of barley, caused by Pyrenophora graminea, is an important seed-borne disease in organically grown as well as in conventionally grown Nordic and Mediterranean barley districts. Two barley segregating populations represented by 103 recombinant inbred lines (RILs) of the cross L94 (susceptible) x Vada (resistant) and 194 RILs of the cross Arta (susceptible) x Hordeum spontaneum 41-1 (resistant) were analysed with two highly virulent leaf stripe isolates, Dg2 and Dg5, to identify loci for P. graminea resistance. A major gene with its positive allele contributed by Vada and H. spontaneum 41-1 was detected in both populations and for both pathogen isolates on chromosome 2HL explaining 44.1 and 91.8% R (2), respectively for Dg2 and Dg5 in L94 x Vada and 97.8 and 96.1% R (2), respectively for Dg2 and Dg5 in Arta x H. spontaneum 41-1. Common markers in the gene region of the two populations enabled map comparison and highlighted an overlapping for the region of the resistance locus. Since the map position of the resistance locus identified in this report is the same as that for the leaf stripe resistance gene Rdg1a, mapped earlier in Alf and derived from the 'botanical' barley line H. laevigatum, we propose that leaf stripe resistance in Vada and H. spontaneum 41-1 is governed by the same gene, namely by Rdg1a, and that Rdg1a resistance could be traced back to H. spontaneum, the progenitor of cultivated barley. PCR-based molecular markers that can be used for marker-assisted selection (MAS) of Rdg1a were identified. An Rdg1a syntenic interval with the rice chromosome arm 4L was identified on the basis of rice orthologs of EST-based barley markers. Analysis of the rice genes annotated into the syntenic interval did not reveal sequences strictly belonging to the major class (nucleotide-binding site plus leucine-rich repeat) of the resistance genes. Nonetheless, four genes coding for domains that are present in the major disease-resistance genes, namely receptor-like protein kinase and ATP/GTP-binding proteins, were identified together with a homolog of the barley powdery mildew resistance gene mlo. Three (out of five) homologs of these genes were mapped in the Rdg1a region in barley and the mlo homolog map position was tightly associated with the LOD score peak in both populations.


Subject(s)
Ascomycota/physiology , Chromosome Mapping/methods , Genes, Plant/genetics , Hordeum/genetics , Immunity, Innate/genetics , Plant Diseases/immunology , Plant Leaves/genetics , Chromosomes, Plant/genetics , Hordeum/immunology , Hordeum/microbiology , Lod Score , Models, Genetic , Oryza/genetics , Phenotype , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Leaves/microbiology , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Structure, Tertiary , Quantitative Trait Loci/genetics , Synteny/genetics
9.
J Exp Bot ; 60(12): 3531-44, 2009.
Article in English | MEDLINE | ID: mdl-19561048

ABSTRACT

Drought tolerance is a key trait for increasing and stabilizing barley productivity in dry areas worldwide. Identification of the genes responsible for drought tolerance in barley (Hordeum vulgare L.) will facilitate understanding of the molecular mechanisms of drought tolerance, and also facilitate the genetic improvement of barley through marker-assisted selection or gene transformation. To monitor the changes in gene expression at the transcriptional level in barley leaves during the reproductive stage under drought conditions, the 22K Affymetrix Barley 1 microarray was used to screen two drought-tolerant barley genotypes, Martin and Hordeum spontaneum 41-1 (HS41-1), and one drought-sensitive genotype Moroc9-75. Seventeen genes were expressed exclusively in the two drought-tolerant genotypes under drought stress, and their encoded proteins may play significant roles in enhancing drought tolerance through controlling stomatal closure via carbon metabolism (NADP malic enzyme, NADP-ME, and pyruvate dehydrogenase, PDH), synthesizing the osmoprotectant glycine-betaine (C-4 sterol methyl oxidase, CSMO), generating protectants against reactive-oxygen-species scavenging (aldehyde dehydrogenase,ALDH, ascorbate-dependent oxidoreductase, ADOR), and stabilizing membranes and proteins (heat-shock protein 17.8, HSP17.8, and dehydrin 3, DHN3). Moreover, 17 genes were abundantly expressed in Martin and HS41-1 compared with Moroc9-75 under both drought and control conditions. These genes were possibly constitutively expressed in drought-tolerant genotypes. Among them, seven known annotated genes might enhance drought tolerance through signalling [such as calcium-dependent protein kinase (CDPK) and membrane steroid binding protein (MSBP)], anti-senescence (G2 pea dark accumulated protein, GDA2), and detoxification (glutathione S-transferase, GST) pathways. In addition, 18 genes, including those encoding Delta(l)-pyrroline-5-carboxylate synthetase (P5CS), protein phosphatase 2C-like protein (PP2C), and several chaperones, were differentially expressed in all genotypes under drought; thus they were more likely to be general drought-responsive genes in barley. These results could provide new insights into further understanding of drought-tolerance mechanisms in barley.


Subject(s)
Gene Expression Regulation, Plant , Hordeum/physiology , Plant Proteins/genetics , Droughts , Gene Expression Profiling , Genotype , Hordeum/genetics , Plant Proteins/metabolism , Reproduction
10.
Plant J ; 59(1): 14-26, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19309461

ABSTRACT

In the present study, we analysed allele-specific expression (ASE) in the selfing species barley to assess the frequency of cis-acting regulatory variation and the effects of genetic background, developmental differences and drought stress on allelic expression levels. We measured ASE ratios in 30 genes putatively involved in stress responses in five hybrids and their reciprocals, namely Hordeum spontaneum 41-1/Alexis (HAl), Hordeum spontaneum 41-1/Arta (HAr), Sloop/WI3408 (SW), Tadmor/Sloop (TS) and Tadmor/WI3408 (TW). In order to detect cis-acting variation related to drought and developmental changes, the barley hybrids were grown under control and water-limited conditions, and leaf tissue was harvested at two developmental stages. The analysis demonstrated that more than half of the genes measured (63%) showed allelic differences in expression of up to 19-fold due to cis-regulatory variation in at least one cross by treatment/stage combination. Drought stress induced changes in allelic expression ratios, indicating differences between drought responsive cis-elements. In addition, ASE differences between developmental stages suggested the presence of cis-acting elements interacting with developmental cues. We were also able to demonstrate that the levels and frequency of allelic imbalance and hence differences in cis-regulatory elements are correlated with the genetic divergence between the parental lines, but may also arise as an adaptation to diverse habitats. Our findings suggest that cis-regulatory variation is a common phenomenon in barley, and may provide a molecular basis of transgression. Differential expression of near-isogenic members of the same gene family could potentially result in hybrid lines out performing their parents in terms of expression level, timing and response to developmental and environmental cues. Identification and targeted manipulation of cis-regulatory elements will assist in breeding improved crops with a better adaptation to changing environments.


Subject(s)
Alleles , Droughts , Gene Expression Profiling , Hordeum/genetics , Chimera , Gene Expression Regulation, Plant , Genes, Plant , Genotype , Hordeum/growth & development , RNA, Plant/metabolism , Stress, Physiological
11.
J Integr Plant Biol ; 50(8): 1004-14, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18713351

ABSTRACT

The objective of this study was to investigate the genetic diversity of barley accessions. Additionally, association trait analysis was conducted for grain yield under salinity, heading date and plant height. For this purpose, 48 barley genotypes were analyzed with 22 microsatellite simple sequence repeat (SSR) markers. Four of the 22 markers (Bmac316, scssr03907, HVM67 and Bmag770) were able to differentiate all barley genotypes. Cluster and principal coordinate analysis allowed a clear grouping between countries from the same region. The genotypes used in this study have been evaluated for agronomic performance in different environments. Conducting association analysis for grain yield under salinity conditions using TASSEL software revealed a close association of the marker Bmag749 (2H, bin 13) in two different environments with common significant alleles (175, 177), whereas the HVHOTR1 marker (2H, bin 3) was only significant in Sakhar_Egypt with alleles size being 158 and 161. Heading date also showed an association with scssr03907 through the common significant specific allele 111 and EBmac0415 markers in three different agro climatic locations, whereas HVCMA, scssr00103 and HVM67 were linked to heading date in the Egyptian environment only. The plant height association analysis revealed significant markers Bmag770 via the significant allele 152 and scssr09398.


Subject(s)
Adaptation, Physiological/genetics , Flowers/genetics , Genetic Variation , Hordeum/anatomy & histology , Hordeum/genetics , Minisatellite Repeats/genetics , Salinity , Alleles , Cluster Analysis , Genetic Markers , Linkage Disequilibrium/genetics , Principal Component Analysis , Quantitative Trait, Heritable
12.
Phytopathology ; 96(11): 1214-22, 2006 Nov.
Article in English | MEDLINE | ID: mdl-18943958

ABSTRACT

ABSTRACT Competition among eight Rhynchosporium secalis isolates was assessed during parasitic and saprophytic phases of the disease cycle in field experiments conducted at two locations and over two growing seasons. The eight isolates were inoculated onto six barley populations exhibiting varying degrees of resistance. Microsatellite analysis of 2,866 isolates recovered from the field experiments showed significant, and sometimes opposite, changes in the frequencies of R. secalis genotypes during the growing season (parasitic phase) and between growing seasons (saprophytic phase). Isolates that showed the most complex virulence in greenhouse seedling assays had the lowest fitness in the field experiment. Significant differences in isolate fitness were found on different host populations and in different environments. Selection coefficients were large, indicating that evolution can occur rapidly in field populations. Although inoculated isolates had the lowest overall fitness on the moderately resistant landrace cv. Arabi Aswad, some isolates were more virulent and consistently increased in frequency on this landrace, suggesting a risk of directional selection and possible erosion of the resistance following its widespread deployment in monoculture. These results provide the first direct evidence that R. secalis pathogen genotypes differ in their saprophytic ability and parasitic fitness under field conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...