Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Neurosci ; 25(11): 2398-2407, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34549671

ABSTRACT

Background: The ingestion of combinatory Alcohol Mixed with Energy Drink (AMED) beverages continues to increase markedly, particularly among young adults. Some studies suggest detrimental health effects related to the combination of alcohol with energy drink formulations; however, the consumption of AMED has not been investigated in context of the cerebral microvasculature or neuroinflammation. We hypothesized that cerebral capillary integrity and glial cells are particularly vulnerable to the combination of AMED.Methods:12-week old wild-type C57BL/6J mice were orally gavaged with either vehicle (water), alcohol (vodka), an energy drink (MotherTM), or a combination AMED, daily for five days. Thereafter, mice were sacrificed, blood alcohol concentrations were analysed and cryosections of brain specimens were subjected to confocal immunofluorescent analysis for measures of cerebral capillary integrity via immunoglobulin G (IgG), and markers of neuroinflammation, ionized-calcium-binding-adaptor-molecule 1 (Iba1) and Glial-Fibrillary-Acidic-Protein (GFAP). Proinflammatory cytokines, IL-2, IL-17A, IFN-ϒ, and anti-inflammatory cytokines, IL-4, IL-6 and IL-10, were also measured in serum.Results: Consistent with previous studies, cerebral capillary dysfunction and astroglial cell activation were markedly greater in the alcohol-only group (AO); however, the AO-induced effects were profoundly attenuated with the AMED combination. Mice maintained on AO and AMED interventions exhibited a moderate increase in microglial recruitment. There were no significant changes in pro-inflammatory nor anti-inflammatory cytokines in ED or AMED treated mice.Conclusion: This study suggests that paradoxically the acute detrimental effects of alcohol on cerebral capillary integrity and astrogliosis are counteracted with the co-provision of an ED, rich in caffeine and taurine and containing B-group vitamins.


Subject(s)
Energy Drinks , Mice , Animals , Neuroinflammatory Diseases , Alcohol Drinking/psychology , Mice, Inbred C57BL , Ethanol , Cytokines
2.
Nutrients ; 13(12)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34959820

ABSTRACT

Brown adipose tissue (BAT) activation is associated with increased energy expenditure by inducing non-shivering thermogenesis. The ingestion of a milk fat globule membrane (MFGM) supplement and a high calorie diet are reported gateways into BAT activation. However, little is known about the effect of the MFGM and high calorie diets on BAT volume. To gain insight into this, mice were maintained on a high-fat (HF) or low-fat (LF) diet in conjunction with either full-cream (FC) or skim bovine dairy milk (BDM). After being maintained on their respective diets for 13 weeks, their body composition, including BAT volume, was measured using X-ray microtomography. A high calorie diet resulted in an increase in the BAT volume and mice consuming an HF diet in conjunction with FC BDM had a significantly greater BAT volume than all the other groups. Conversely, mice consuming an HF diet in addition to skim milk had a lower BAT volume compared to the HF control. The data presented suggest that the consumption of a high calorie diet in conjunction with FC BDM increases the BAT volume in wild-type mice. This study may provide valuable insight into future studies investigating BAT volume and BAT activity in relation to environmental factors, including diet.


Subject(s)
Adipose Tissue, Brown/drug effects , Body Composition/drug effects , Eating/drug effects , Glycolipids/administration & dosage , Glycoproteins/administration & dosage , Milk/chemistry , Animals , Cattle , Diet, Fat-Restricted/methods , Diet, High-Fat/methods , Lipid Droplets , Lipids/administration & dosage , Mice , Thermogenesis/drug effects
3.
Front Nutr ; 8: 668514, 2021.
Article in English | MEDLINE | ID: mdl-34012975

ABSTRACT

Energy drinks containing significant quantities of caffeine and sugar are increasingly consumed, particularly by adolescents and young adults. Chronic ingestion of energy drinks may potentially regulate vascular risk factors. This study investigated the effects of chronic ingestion of energy drinks on blood-brain barrier (BBB) integrity and neuroinflammation. Male C57BL/6J mice were maintained on water (control), MotherTM (ED), sugar-free MotherTM (sfED), or Coca ColaTM soft drink (SD) for 13 weeks. The BBB integrity and neuroinflammation were analyzed with semi-quantitative immunofluorescent microscopy. Blood pressure, plasma inflammatory cytokine levels and blood glucose were also considered. Following 13 weeks of intervention, mice treated with ED, sfED, and SD showed significant disruption of BBB. However, marked neuroinflammation was observed only in sfED group mice. The consumption of ED and sfED significantly altered the blood pressure and plasma concentrations of inflammatory cytokines, TNF-a, IL-4, IL-6, and IL-10, and both increased plasma glucose. Correlation analyses showed significant associations between BBB dysfunction and hypotension, hyperglycaemia and cytokine dyshomeostasis. The intake of energy drink, particularly the sugar free formulation, may compromise the integrity of BBB and induce neuroinflammation via hypotension, hyperglycaemia and inflammatory pathways.

4.
Nutrients ; 13(4)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917297

ABSTRACT

Energy drinks containing significant quantities of caffeine, taurine and sugar are increasingly consumed, particularly by adolescents and young adults. The putative effects of chronic ingestion of either standard energy drink, MotherTM (ED), or its sugar-free formulation (sfED) on metabolic syndrome were determined in wild-type C57BL/6J mice, in comparison to a soft drink, Coca-Cola (SD), a Western-styled diet enriched in saturated fatty acids (SFA), and a combination of SFA + ED. Following 13 weeks of intervention, mice treated with ED were hyperglycaemic and hypertriglyceridaemic, indicating higher triglyceride glucose index, which was similar to the mice maintained on SD. Surprisingly, the mice maintained on sfED also showed signs of insulin resistance with hyperglycaemia, hypertriglyceridaemia, and greater triglyceride glucose index, comparable to the ED group mice. In addition, the ED mice had greater adiposity primarily due to the increase in white adipose tissue, although the body weight was comparable to the control mice receiving only water. The mice maintained on SFA diet exhibited significantly greater weight gain, body fat, cholesterol and insulin, whilst blood glucose and triglyceride concentrations remained comparable to the control mice. Collectively, these data suggest that the consumption of both standard and sugar-free forms of energy drinks induces metabolic syndrome, particularly insulin resistance.


Subject(s)
Carbonated Beverages/adverse effects , Diet, Western/adverse effects , Energy Drinks/adverse effects , Metabolic Syndrome/etiology , Adipose Tissue, White/physiopathology , Adiposity/physiology , Animals , Blood Glucose/analysis , Body Weight , Disease Models, Animal , Fatty Acids/administration & dosage , Fatty Acids/adverse effects , Humans , Male , Metabolic Syndrome/blood , Metabolic Syndrome/diagnosis , Metabolic Syndrome/physiopathology , Mice , Mice, Inbred C57BL , Sweetening Agents/adverse effects , Triglycerides/blood
5.
Front Nutr ; 7: 58, 2020.
Article in English | MEDLINE | ID: mdl-32435651

ABSTRACT

Ingestion of Western-diets enriched in long chain saturated fatty acids (LCSFA) are associated with increased risk of blood-brain barrier (BBB) dysfunction and neurovascular inflammation. Potential mechanisms include vascular insult as a consequence of metabolic aberrations, or changes in capillary permeability resulting in brain parenchymal extravasation of pro-inflammatory molecules. Bovine dairy milk (BDM) is potentially a significant source of dietary LCSFA, however, BDM contains an array of bioactive molecules purported to have vascular anti-inflammatory properties. This study investigated the effects of full cream (4% total fat) and delipidated (skim) BDM on BBB integrity and neuroinflammation in wild-type mice. Mice consuming substantial amounts of full cream or skim BDM with LCSFA-enriched chow were dyslipidemic compared to control mice provided with standard chow and water. However, there was no evidence of BBB dysfunction or neuroinflammation indicated by parenchymal abundance of immunoglobulin G and microglial recruitment, respectively. Positive control mice maintained on an LCSFA-enriched diet derived from cocoa-butter and water, had marked BBB dysfunction, however, co-provision of both full cream and skim milk solutions effectively attenuated LCSFA-induced BBB dysfunction. In mice provided with low-fat chow and full cream BDM drinking solutions, there were substantial favorable changes in the concentration of plasma anti-inflammatory cytokines. This study suggests that consumption of BDM may confer potent vascular benefits through the neuroprotective properties exuded by the milk-fat globule membrane moiety of BDM.

6.
Front Nutr ; 6: 111, 2019.
Article in English | MEDLINE | ID: mdl-31396518

ABSTRACT

Objective: Studies report that acute consumption of energy drinks transiently increases blood pressure (BP). However, few studies report the effect of chronic energy drink consumption on BP. In this study, we investigated the effects of long-term energy drink ingestion on BP in C57BL/6J normotensive wild-type mice. Research Methods and Procedures: Groups of mice were randomized to no treatment (water) (Control group), or to Mother™ provided as a decarbonated 30% (v/v) drinking solution (Energy Drink group), sugar-free Mother™ at 30% (Sugar-free group), Coca Cola™ at 30% (Coke group) for a total intervention period of 13 weeks. Results: After 13 weeks of intervention, the control mice showed a modest increase in systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) by 7.1 ± 8.8, 5.8 ± 9.4, and 6.3 ± 9.1 mmHg, respectively. However, the Energy Drink significantly decreased the DBP and MAP by 18.8 ± 9.9 and 15.3 ± 9.8 mmHg, respectively. Similarly, Sugar-free group mice showed significant decrease of the SBP, DBP, and MAP by 10.85 ± 5.6, 18.7 ± 6.7, and 15.6 ± 6.1 mmHg, respectively. The SBP, DBP, and MAP in Coke mice showed no significant changes. The estimated cumulative intake of caffeine, taurine, and vitamin B3 and B5 was significantly higher in the mice of Energy Drink and Sugar-free groups compared to the Control and Coke mice. Conclusion: Collectively, the data suggest that the long-term chronic consumption of energy drinks may significantly lower the BP in normotensive mice through the actions of caffeine, taurine, and/or B-vitamins. The study findings do not support consideration of energy drinks for BP management, but rather demonstrate no long-term amplification of BP in normotensive preclinical models.

7.
Ther Deliv ; 9(10): 703-709, 2018 10.
Article in English | MEDLINE | ID: mdl-30277134

ABSTRACT

AIM: To enhance the bioavailability and brain uptake of probucol and examine whether it attenuates neuroinflammation and neurodegeneration by utilizing a sodium alginate nanoencapsulation technique. MATERIALS & METHODS: Wild-type mice were given either low-fat standard chow, high-fat (HF) diet to induce neuroinflammation and neurodegeneration, HF diet supplemented with nanocapsuled probucol at a concentration of 0.1% (w/w), HF diet supplemented with noncapsulated probucol at the same concentration of 0.1%, or HF diet supplemented with noncapsulated probucol at higher concentration (1%) for 24 weeks. RESULTS & CONCLUSION: The nanoencapsulation increased the plasma and brain concentration of probucol significantly compared with the mice that was given the same dosage of probucol without capsulation, and significantly suppressed the neuroinflammation and neurodegeneration.


Subject(s)
Drug Carriers/chemistry , Drug Compounding/methods , Inflammation/drug therapy , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/administration & dosage , Probucol/administration & dosage , Alginates/chemistry , Animals , Biological Availability , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Capsules , Diet, High-Fat , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Inflammation/etiology , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/pathology , Neuroprotective Agents/pharmacokinetics , Probucol/pharmacokinetics
8.
Front Behav Neurosci ; 12: 174, 2018.
Article in English | MEDLINE | ID: mdl-30210312

ABSTRACT

Morris water maze (MWM) is widely used to assess cognitive deficits in pre-clinical rodent models. Latency time to reach escape platform is frequently reported, but may be confounded by deficits in visual acuity, or differences in locomotor activity. This study compared performance of Senescence Accelerated Mouse Prone-Strain 8 (SAMP8) and control Senescence Accelerated Mouse Resistant-Strain 1 (SAMR1) mice in classical MWM, relative to performance in a newly developed olfactory-visual maze testing protocol. Performance indicated as the escape time to rescue platform for classical MWM testing showed that SAMP8 mice as young as 6 weeks of age did poorly relative to age-matched SAMR1 mice. The olfactory-visual maze challenge described better discriminated SAMP8 vs. SAMR1 mice than classical MWM testing, based on latency time measures. Consideration of the distance traveled rather than latency time in the classical MWM found no treatment effects between SAMP8 and SAMR1 at 40 weeks of age and the olfactory-visual measures of performance confirmed the classical MWM findings. Longitudinal (repeat) assessment of SAMP8 and SAMR1 performance at 6, 20, 30, and 40 weeks of age in the olfactory-visual testing protocol showed no age-associated deficits in SAMP8 mice to the last age end-point indicated. Collectively, the results from this study suggest the olfactory-visual testing protocol may be advantageous compared to classical MWM as it avoids potential confounders of visual impairment in some strains of mice and indeed, may offer insight into cognitive and behavioral deficits that develop with advanced age in the widely used SAMP8 murine model.

SELECTION OF CITATIONS
SEARCH DETAIL
...