Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Care ; 27(1): 475, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38049866

ABSTRACT

The multiple roles of iron in the body have been known for decades, particularly its involvement in iron overload diseases such as hemochromatosis. More recently, compelling evidence has emerged regarding the critical role of non-transferrin bound iron (NTBI), also known as catalytic iron, in the care of critically ill patients in intensive care units (ICUs). These trace amounts of iron constitute a small percentage of the serum iron, yet they are heavily implicated in the exacerbation of diseases, primarily by catalyzing the formation of reactive oxygen species, which promote oxidative stress. Additionally, catalytic iron activates macrophages and facilitates the growth of pathogens. This review aims to shed light on this underappreciated phenomenon and explore the various common sources of NTBI in ICU patients, which lead to transient iron dysregulation during acute phases of disease. Iron serves as the linchpin of a vicious cycle in many ICU pathologies that are often multifactorial. The clinical evidence showing its detrimental impact on patient outcomes will be outlined in the major ICU pathologies. Finally, different therapeutic strategies will be reviewed, including the targeting of proteins involved in iron metabolism, conventional chelation therapy, and the combination of renal replacement therapy with chelation therapy.


Subject(s)
Hemochromatosis , Iron Overload , Humans , Iron , Critical Illness/therapy , Transferrin/metabolism
2.
Sci Rep ; 13(1): 7920, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37193699

ABSTRACT

Loosely bound iron, due to its contribution to oxidative stress and inflammation, has become an important therapeutic target for many diseases. A water-soluble chitosan-based polymer exhibiting both antioxidant and chelating properties due to the dual functionalization with DOTAGA and DFO has been developed to extract this iron therefore preventing its catalytic production of reactive oxygen species. This functionalized chitosan was shown to have stronger antioxidant properties compared to conventional chitosan, improved iron chelating properties compared to the clinical therapy, deferiprone, and provided promising results for its application and improved metal extraction within a conventional 4 h hemodialysis session with bovine plasma.

3.
Sci Rep ; 11(1): 19948, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620952

ABSTRACT

In this article, we report the conception and the use of dialysis-based medical device for the extraction of metals. The medical device is obtained by addition in the dialysate of a functionalized chitosan that can chelate endogenous metals like iron or copper. This water-soluble functionalized chitosan is obtained after controlled reacetylation and grafting of DOTAGA. Due to the high mass of chitosan, the polymer cannot cross through the membrane and the metals are trapped in the dialysate during hemodialysis. Copper extraction has been evaluated in vitro using an hemodialysis protocol. Feasibility study has been performed on healthy sheep showing no acute toxicity througout the entire dialysis procedure and first insights of metallic extraction even on healthy animals.

SELECTION OF CITATIONS
SEARCH DETAIL
...