Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928388

ABSTRACT

Sleep problems are a significant phenotype in children with fragile X syndrome. Our prior work assessed sleep-wake cycles in Fmr1KO male mice and wild type (WT) littermate controls in response to ketogenic diet therapy where mice were treated from weaning (postnatal day 18) through study completion (5-6 months of age). A potentially confounding issue with commencing treatment during an active period of growth is the significant reduction in weight gain in response to the ketogenic diet. The aim here was to employ sleep electroencephalography (EEG) to assess sleep-wake cycles in mice in response to the Fmr1 genotype and a ketogenic diet, with treatment starting at postnatal day 95. EEG results were compared with prior sleep outcomes to determine if the later intervention was efficacious, as well as with published rest-activity patterns to determine if actigraphy is a viable surrogate for sleep EEG. The data replicated findings that Fmr1KO mice exhibit sleep-wake patterns similar to wild type littermates during the dark cycle when maintained on a control purified-ingredient diet but revealed a genotype-specific difference during hours 4-6 of the light cycle of the increased wake (decreased sleep and NREM) state in Fmr1KO mice. Treatment with a high-fat, low-carbohydrate ketogenic diet increased the percentage of NREM sleep in both wild type and Fmr1KO mice during the dark cycle. Differences in sleep microstructure (length of wake bouts) supported the altered sleep states in response to ketogenic diet. Commencing ketogenic diet treatment in adulthood resulted in a 15% (WT) and 8.6% (Fmr1KO) decrease in body weight after 28 days of treatment, but not the severe reduction in body weight associated with starting treatment at weaning. We conclude that the lack of evidence for improved sleep during the light cycle (mouse sleep time) in Fmr1KO mice in response to ketogenic diet therapy in two studies suggests that ketogenic diet may not be beneficial in treating sleep problems associated with fragile X and that actigraphy is not a reliable surrogate for sleep EEG in mice.


Subject(s)
Diet, Ketogenic , Fragile X Mental Retardation Protein , Fragile X Syndrome , Mice, Inbred C57BL , Mice, Knockout , Sleep , Animals , Mice , Fragile X Syndrome/diet therapy , Male , Sleep/physiology , Fragile X Mental Retardation Protein/genetics , Electroencephalography , Disease Models, Animal
2.
G3 (Bethesda) ; 11(8)2021 08 07.
Article in English | MEDLINE | ID: mdl-33914087

ABSTRACT

The toxicity and addictive liability associated with cocaine abuse are well-known. However, its mode of action is not completely understood, and effective pharmacotherapeutic interventions remain elusive. The cholinergic effects of cocaine on acetylcholine receptors, synthetic enzymes, and degradative enzymes have been the focus of relatively little empirical investigation. Due to its genetic tractability and anatomical simplicity, the egg laying circuit of the hermaphroditic nematode, Caenorhabditis elegans, is a powerful model system to precisely examine the genetic and molecular targets of cocaine in vivo. Here, we report a novel cocaine-induced behavioral phenotype in C. elegans, cocaine-stimulated egg laying. In addition, we present the results of an in vivo candidate suppression screen of synthetic enzymes, receptors, degradative enzymes, and downstream components of the intracellular signaling cascades of the main neurotransmitter systems that control C. elegans egg laying. Our results show that cocaine-stimulated egg laying is dependent on acetylcholine synthesis and synaptic release, functional nicotinic acetylcholine receptors, and the C. elegans acetylcholinesterases.


Subject(s)
Caenorhabditis elegans Proteins , Cocaine , Acetylcholine , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Cocaine/toxicity , Oviposition
SELECTION OF CITATIONS
SEARCH DETAIL
...