Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Transplant ; 20(10): 1499-514, 2011.
Article in English | MEDLINE | ID: mdl-21396159

ABSTRACT

A diet containing high levels of saturated fat and cholesterol is detrimental to many aspects of health and is known to lead to obesity, metabolic syndrome, heart disease, diabetes, and cancer. However, the effects of a diet rich in saturated fat and cholesterol on the brain are not currently well understood. In order to determine direct effects of a high saturated fat and cholesterol diet upon fetal hippocampal tissue, we transplanted hippocampal grafts from embryonic day 18 rats to the anterior eye chamber of 16-month-old host animals that were fed either a normal rat chow diet or a 10% hydrogenated coconut oil + 2% cholesterol diet (HFHC diet) for 8 weeks. One eye per rat received topical application of an IL-1 receptor antagonist (IL-1Ra, Kineret®) and the other served as a saline control. Results revealed that the HFHC diet led to a marked reduction in hippocampal transplant growth, and detrimental effects of the diet were alleviated by the IL-1 receptor antagonist IL-1Ra. Graft morphology demonstrated that the HFHC diet reduced organotypical development of the hippocampal neuronal cell layers, which was also alleviated by IL-1Ra. Finally, grafts were evaluated with markers for glucose transporter expression, astrocytes, and activated microglia. Our results demonstrate significant effects of the HFHC diet on hippocampal morphology, including elevated microglial activation and reduced neuronal development. IL-1Ra largely blocked the detrimental effects of this diet, suggesting a potential use for this agent in neurological disorders involving neuroinflammation.


Subject(s)
Cholesterol, Dietary/adverse effects , Dietary Fats/adverse effects , Hippocampus/transplantation , Inflammation/chemically induced , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Animals , Astrocytes/drug effects , Eating/drug effects , Female , Hippocampus/drug effects , Hippocampus/embryology , Microglia/drug effects , Rats
2.
Brain Res ; 1141: 56-64, 2007 Apr 13.
Article in English | MEDLINE | ID: mdl-17292337

ABSTRACT

It has been shown using in vitro techniques that BDNF and NGF evoke neurotransmitter release in the hippocampus but this phenomenon has not been demonstrated in vivo to date. We therefore performed in vivo microdialysis in urethane-anesthetized Fischer 344 rats. The microdialysis probe was implanted stereotaxically into the CA1 area of the hippocampus. Three hours after the implantation of the probe, glutamate (Glu) and dopamine (DA) levels had reached a stable baseline. Four baseline samples were collected every 15 min at a flow rate of 1 microL/min. The growth factors were delivered (1 microL/10 min) using a microinjector attached to the microdialysis probe. We found that BDNF and NGF, when administered into the hippocampus, evoked dopamine and glutamate release in a dose-dependent fashion. NGF produced a biphasic response in the release of Glu, and a uniphasic response in the release of DA, both of which were calcium dependent. The neurotransmitter release induced by NGF was blocked by tetrodotoxin, indicating neuronal origin of this response. The BDNF induced release of DA and Glu was decreased in low calcium conditions, indicating that it is at least partially calcium dependent. Furthermore, BDNF-induced neurotransmitter release was partially blocked by pre-treatment with K252a, an antagonist for tyrosine kinase receptors, indicating that BDNF is acting through Trk receptors to induce neurotransmitter release. These results demonstrate a close relationship between the growth factors BDNF and NGF and the neurotransmitters DA and Glu in the hippocampus of intact animals.


Subject(s)
Brain-Derived Neurotrophic Factor/pharmacology , Dopamine/metabolism , Glutamic Acid/metabolism , Hippocampus/drug effects , Nerve Growth Factor/pharmacology , Animals , Area Under Curve , Carbazoles/pharmacology , Chromatography, High Pressure Liquid/methods , Drug Interactions , Electrochemistry/methods , Enzyme Inhibitors/pharmacology , Indole Alkaloids/pharmacology , Male , Microdialysis , Rats , Rats, Inbred F344
3.
Exp Neurol ; 202(2): 336-47, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16889771

ABSTRACT

Glial cell line-derived neurotrophic factor (GDNF) is a trophic factor for peripheral organs, spinal cord, and midbrain dopamine (DA) neurons. Levels of GDNF deteriorate in the substantia nigra in Parkinson's disease (PD). A heterozygous mouse model was created to assess whether chronic reductions in this neurotrophic factor impact motor function and the nigrostriatal dopamine system during the aging process. Due to the important role GDNF plays in kidney development, kidney function and histology were assessed and were found to be normal in both wild-type (WT) and GDNF+/- mice up to 22 months of age. Further, the animals of both genotypes had similar weights throughout the experiment. Locomotor activity was assessed for male WT and GDNF+/- mice at 4-month intervals from 4 to 20 months of age. Both GDNF+/- and WT mice exhibited an age-related decline in horizontal activity, although this was found 4 months earlier in GDNF+/- mice, at 12 months of age. Comparison of young (8 month old) and aged (20 month old) GDNF+/- and WT mice on an accelerating rotarod apparatus established a deficiency for aged but not young GDNF+/- mice, while aged WT mice performed as well as young WT mice on this task. Finally, both WT and GDNF+/- mice exhibited an age-related decrease in substantia nigra TH immunostaining, which was accelerated in the GDNF+/- mice. These behavioral and histological alterations suggest that GDNF may be an important factor for maintenance of motor coordination and spontaneous activity as well as DA neuronal function during aging, and further suggest that GDNF+/- mice may serve as a model for neuroprotective or rescue studies.


Subject(s)
Aging/physiology , Gene Expression/genetics , Glial Cell Line-Derived Neurotrophic Factor/deficiency , Motor Activity/physiology , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism , Age Factors , Animals , Behavior, Animal/physiology , Body Weight/genetics , Cell Count/methods , Creatinine/metabolism , Enzyme-Linked Immunosorbent Assay/methods , Genotype , Immunohistochemistry/methods , Kidney/anatomy & histology , Male , Mice , Mice, Transgenic , Multivariate Analysis , RNA, Messenger/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction/methods , Substantia Nigra/anatomy & histology , Urea/metabolism
4.
Brain Res ; 1068(1): 257-60, 2006 Jan 12.
Article in English | MEDLINE | ID: mdl-16364262

ABSTRACT

Glial cell line derived neurotrophic factor (GDNF) has been reported to alter the reward value of abused substances such as alcohol and cocaine as well as neural circuitry underlying reward. The role of GDNF in reward was further characterized in the present study using operant procedures to determine the value of a natural reward, sucrose, in GDNF heterozygous (GDNF+/-) mice versus wild-type (WT) mice. Female mice were tested for 2 h daily for 10 days in operant chambers with 2 levers. Responses on the correct lever allowed 5-s access to a dipper cup containing 15% sucrose. GDNF+/- and WT mice did not differ with acquisition or accuracy of responding. GDNF+/- mice emitted more responses than WT mice for sucrose, suggesting enhanced reward value of sucrose in these mice. In a separate experiment, concentrations of GDNF protein in striatal tissue were determined at 4, 8, and 12 months of age and found to be 38%-68% lower in GDNF+/- than WT mice at all three ages. Together, the results are consistent with an emerging literature indicating that reduced GDNF levels augment reward and increased GDNF levels attenuate reward, suggesting that GDNF plays an important role in neural systems mediating reward.


Subject(s)
Conditioning, Operant/physiology , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/physiology , Neostriatum/metabolism , Reward , Aging/physiology , Animals , Female , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Mice , Mice, Knockout , Neostriatum/growth & development , Sucrose/pharmacology
5.
Cell Transplant ; 14(1): 21-9, 2005.
Article in English | MEDLINE | ID: mdl-15789659

ABSTRACT

Trophic factors have been found to play a significant role both in long-term survival processes and in more rapid and dynamic processes in the brain and spinal cord. However, little is known regarding the regulation of expression of growth factors, and how these proteins interact on a cell-to-cell basis. We have studied protein levels of one growth factor known to affect the noradrenergic innervation of the hippocampal formation, namely brain-derived neurotrophic factor (BDNF). The purpose of the present study was to determine if appropriate innervation or contact between the LC noradrenergic neurons and their target, the hippocampus, affects expression of this growth factor in either brain region. Fetal brain stem tissue, containing the LC, and hippocampal formation were dissected from embryonic day 17 rat fetuses and transplanted together or alone into the anterior chamber of the eye of adult Fisher 344 rats. The tissue was grown together for 6 weeks, after which the animals were sacrificed and ELISAs for BDNF were undertaken. Transplantation to the anterior chamber of the eye increased the expression of BDNF in the hippocampal but not the brain stem tissue, compared with levels observed in fetal and adult rats in vivo. In addition, double grafting with hippocampal tissue more than tripled BDNF levels in brain stem grafts and doubled BDNF levels in the hippocampal portion of double grafts compared with hippocampal single grafts. Triple grafts containing basal forebrain, hippocampus, and brain stem LC tissue increased brain stem and hippocampal BDNF levels even further. Colchicine treatment of LC-hippocampal double grafts gave rise to a significant decrease in hippocampal BDNF levels to levels seen in single hippocampal grafts, while only a partial reduction of BDNF levels was seen in the brain stem portion of the same double grafts treated with colchicine. The findings suggest that an appropriate hippocampal innervation or contact with its target tissues is essential for regulation of BDNF expression in the brain stem, and that retrograde transport of BDNF can occur between double grafted fetal tissues in oculo.


Subject(s)
Anterior Chamber/surgery , Brain Tissue Transplantation , Brain-Derived Neurotrophic Factor/metabolism , Fetal Tissue Transplantation , Nervous System/embryology , Animals , Colchicine/pharmacology , Enzyme-Linked Immunosorbent Assay , Female , Hippocampus/cytology , Hippocampus/metabolism , Hippocampus/transplantation , Locus Coeruleus/cytology , Locus Coeruleus/metabolism , Locus Coeruleus/transplantation , Nervous System/metabolism , Pregnancy , Protein Transport/drug effects , Rats , Rats, Inbred F344 , Septum of Brain/metabolism , Septum of Brain/transplantation
6.
Cell Transplant ; 14(1): 21-29, 2005 Jan.
Article in English | MEDLINE | ID: mdl-28863735

ABSTRACT

Trophic factors have been found to play a significant role both in long-term survival processes and in more rapid and dynamic processes in the brain and spinal cord. However, little is known regarding the regulation of expression of growth factors, and how these proteins interact on a cell-to-cell basis. We have studied protein levels of one growth factor known to affect the noradrenergic innervation of the hippocampal formation, namely brain-derived neurotrophic factor (BDNF). The purpose of the present study was to determine if appropriate innervation or contact between the LC noradrenergic neurons and their target, the hippocampus, affects expression of this growth factor in either brain region. Fetal brain stem tissue, containing the LC, and hippocampal formation were dissected from embryonic day 17 rat fetuses and transplanted together or alone into the anterior chamber of the eye of adult Fisher 344 rats. The tissue was grown together for 6 weeks, after which the animals were sacrificed and ELISAs for BDNF were undertaken. Transplantation to the anterior chamber of the eye increased the expression of BDNF in the hippocampal but not the brain stem tissue, compared with levels observed in fetal and adult rats in vivo. In addition, double grafting with hippocampal tissue more than tripled BDNF levels in brain stem grafts and doubled BDNF levels in the hippocampal portion of double grafts compared with hippocampal single grafts. Triple grafts containing basal forebrain, hippocampus, and brain stem LC tissue increased brain stem and hippocampal BDNF levels even further. Colchicine treatment of LC-hippocampal double grafts gave rise to a significant decrease in hippocampal BDNF levels to levels seen in single hippocampal grafts, while only a partial reduction of BDNF levels was seen in the brain stem portion of the same double grafts treated with colchicine. The findings suggest that an appropriate hippocampal innervation or contact with its target tissues is essential for regulation of BDNF expression in the brain stem, and that retrograde transport of BDNF can occur between double grafted fetal tissues in oculo.

7.
Cell Transplant ; 12(3): 291-303, 2003.
Article in English | MEDLINE | ID: mdl-12797383

ABSTRACT

Glial cell line-derived neurotrophic factor (GDNF) is a trophic factor for noradrenergic (NE) neurons of the pontine nucleus locus coeruleus (LC). Decreased function of the LC-NE neurons has been found during normal aging and in neurodegenerative disorders. We have previously shown that GDNF participates in the differentiation of LC-NE neurons during development. However, the continued role of GDNF for LC-NE neurons during maturation and aging has not been addressed. We examined alterations in aged mice that were heterozygous for the GDNF gene (Gdnf+/-). Wild-type (Gdnf+/+) and Gdnf+/- mice (18 months old) were tested for locomotor activity and brain tissues were collected for measuring norepinephrine levels and uptake, as well as for morphological analysis. Spontaneous locomotion was reduced in Gdnf+/- mice in comparison with Gdnf+/+ mice. The reduced locomotor activity of Gdnf+/- mice was accompanied by reductions in NE transporter activity in the cerebellum and brain stem as well as decreased norepinephrine tissue levels in the LC. Tyrosine hydroxylase (TH) immunostaining demonstrated morphological alterations of LC-NE cell bodies and abnormal TH-positive fibers in the hippocampus, cerebellum, and frontal cortex of Gdnf+/- mice. These findings suggest that the LC-NE system of Gdnf+/- mice is impaired and suggest that GDNF plays an important role in continued maintenance of this neuronal system throughout life.


Subject(s)
Aging/physiology , Locus Coeruleus/metabolism , Nerve Growth Factors/metabolism , Norepinephrine/metabolism , Animals , Brain Chemistry , Brain Stem/metabolism , Cerebellum/cytology , Cerebellum/metabolism , Frontal Lobe/cytology , Frontal Lobe/metabolism , Glial Cell Line-Derived Neurotrophic Factor , Hippocampus/cytology , Hippocampus/metabolism , Locus Coeruleus/cytology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/physiology , Nerve Growth Factors/genetics , Neurons/physiology , Norepinephrine/chemistry , Norepinephrine Plasma Membrane Transport Proteins , Symporters/metabolism , Synaptosomes/chemistry , Synaptosomes/metabolism , Tyrosine 3-Monooxygenase/metabolism
8.
Brain Res ; 967(1-2): 306-10, 2003 Mar 28.
Article in English | MEDLINE | ID: mdl-12650994

ABSTRACT

Alzheimer's disease and normal aging may impair retrograde transport of nerve growth factor (NGF) from cortical areas to basal forebrain cholinergic neurons. We demonstrate a relationship between performance in a spatial reference memory task and NGF distribution in the aged rat brain. In addition, exogenous NGF restored endogenous NGF distribution in cognitively impaired aged rats. These data suggest that NGF administration restores utilization of endogenous growth factor in the brain of cognitively impaired aged rats.


Subject(s)
Aging/drug effects , Brain/drug effects , Cognition Disorders/drug therapy , Nerve Growth Factor/metabolism , Nerve Growth Factor/therapeutic use , Aging/metabolism , Animals , Brain/metabolism , Cognition Disorders/metabolism , Male , Nerve Growth Factor/pharmacology , Rats , Rats, Inbred F344
9.
Cell Transplant ; 12(3): 291-303, 2003 Apr.
Article in English | MEDLINE | ID: mdl-28853928

ABSTRACT

Glial cell line-derived neurotrophic factor (GDNF) is a trophic factor for noradrenergic (NE) neurons of the pontine nucleus locus coeruleus (LC). Decreased function of the LC-NE neurons has been found during normal aging and in neurodegenerative disorders. We have previously shown that GDNF participates in the differentiation of LC-NE neurons during development. However, the continued role of GDNF for LC-NE neurons during maturation and aging has not been addressed. We examined alterations in aged mice that were heterozygous for the GDNF gene (Gdnf+/-). Wild-type (Gdnf+/+) and Gdnf+/- mice (18 months old) were tested for locomotor activity and brain tissues were collected for measuring norepinephrine levels and uptake, as well as for morphological analysis. Spontaneous locomotion was reduced in Gdnf+/- mice in comparison with Gdnf+/+ mice. The reduced locomotor activity of Gdnf +/- mice was accompanied by reductions in NE transporter activity in the cerebellum and brain stem as well as decreased norepinephrine tissue levels in the LC. Tyrosine hydroxylase (TH) immunostaining demonstrated morphological alterations of LC-NE cell bodies and abnormal TH-positive fibers in the hippocampus, cerebellum, and frontal cortex of Gdnf+/- mice. These findings suggest that the LC-NE system of Gdnf+/- mice is impaired and suggest that GDNF plays an important role in continued maintenance of this neuronal system throughout life.

SELECTION OF CITATIONS
SEARCH DETAIL
...