Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
J Biol Phys ; 50(1): 55-69, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38240860

ABSTRACT

Melanoma is one of the most severe cancers due to its great potential to form metastasis. Recent studies showed the importance of mechanical property assessment in metastasis formation which depends on the cytoskeleton dynamics and cell migration. Although cells are considered purely elastic, they are viscoelastic entities. Microrheology atomic force microscopy (AFM) enables the assessment of elasticity and viscous properties, which are relevant to cell behavior regulation. The current work compares the mechanical properties of human neonatal primary melanocytes (HNPMs) with two melanoma cell lines (WM793B and 1205LU cells), using microrheology AFM. Immunocytochemistry of F-actin filaments and phosphorylated focal adhesion kinase (p-FAK) and cell migration assays were performed to understand the differences found in microrheology AFM regarding the tumor cell lines tested. AFM revealed that HNPMs and tumor cell lines had distinct mechanical properties. HNPMs were softer, less viscous, presenting a higher power-law than melanoma cells. Immunostaining showed that metastatic 1205LU cells expressed more p-FAK than WM793B cells. Melanoma cell migration assays showed that WM73B did not close the gap, in contrast to 1205LU cells, which closed the gap at the end of 23 h. These data seem to corroborate the high migratory behavior of 1205LU cells. Microrheology AFM applied to HNPMs and melanoma cells allowed the quantification of elasticity, viscous properties, glassy phase, and power-law properties, which have an impact in cell migration and metastasis formation. AFM study is important since it can be used as a biomarker of the different stages of the disease in melanoma.


Subject(s)
Melanoma , Infant, Newborn , Humans , Melanoma/pathology , Microscopy, Atomic Force , Elasticity , Cell Line, Tumor , Cytoskeleton
2.
Heliyon ; 10(1): e23198, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38163248

ABSTRACT

Nanoparticle (NP) research is an area of scientific interest with high potential for application in biomedical, optical, and electronic fields. Due to their relatively large surface area compared to their mass, NPs can be more chemically reactive and change their reactive strength or other properties. NP-based drug delivery systems provide transport and an effective and controlled way to release the drugs. This work aimed to study the solubility and biological activity of nano-encapsulated copper metal complexes for the induction of toxicity and mortality in larvae of Aedes aegypti mosquitoes. After the nano-encapsulated metal complexes were prepared, the efficiency of this incorporation was determined by electron paramagnetic resonance, and toxicity bioassays were performed. The polymeric-based PLGA NPs encapsulating metal complexes exhibited high toxicity and specificity for target organisms (insect vectors, i.e., A. aegypti), with relatively less environmental impact and long-term control of their breeding.

3.
Burns Trauma ; 11: tkad014, 2023.
Article in English | MEDLINE | ID: mdl-37520659

ABSTRACT

Skin is widely used as a drug delivery route due to its easy access and the possibility of using relatively painless methods for the administration of bioactive molecules. However, the barrier properties of the skin, along with its multilayer structure, impose severe restrictions on drug transport and bioavailability. Thus, bioengineered models aimed at emulating the skin have been developed not only for optimizing the transdermal transport of different drugs and testing the safety and toxicity of substances but also for understanding the biological processes behind skin wounds. Even though in vivo research is often preferred to study biological processes involving the skin, in vitro and ex vivo strategies have been gaining increasing relevance in recent years. Indeed, there is a noticeably increasing adoption of in vitro and ex vivo methods by internationally accepted guidelines. Furthermore, microfluidic organ-on-a-chip devices are nowadays emerging as valuable tools for functional and behavioural skin emulation. Challenges in miniaturization, automation and reliability still need to be addressed in order to create skin models that can predict skin behaviour in a robust, high-throughput manner, while being compliant with regulatory issues, standards and guidelines. In this review, skin models for transdermal transport, wound repair and cutaneous toxicity will be discussed with a focus on high-throughput strategies. Novel microfluidic strategies driven by advancements in microfabrication technologies will also be revised as a way to improve the efficiency of existing models, both in terms of complexity and throughput.

4.
Lab Chip ; 23(3): 495-510, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36620939

ABSTRACT

The lack of biomimetic in vitro models capable of reproducing the complex architecture and the dynamic environment of the gastric mucosa, delay the development of diagnostic and therapeutic tools. Recent advances in microengineering made possible the fabrication of bioinspired microdevices capable of replicating the physiological properties of an organ, inside a microfluidics chip. Herein, a bioinspired stomach-on-a-chip (SoC) device is described, supporting peristalsis-like motion and reconstituting organ-level epithelial architecture and function. The device simulates the upper epithelial interface, representing the three innermost layers of the gastric mucosa, namely the epithelial barrier, the basement membrane and the lamina propria. The dynamic environment imparted by mechanical actuation of the flexible on-chip cell culture substrate, was the main driver in the development of epithelial polarization and differentiation traits characteristic of the native gastric mucosa, and allowed partial recapitulation of gastric barrier function. These traits were not affected by the addition of a mesenchymal population to the system, which was able to remodel the surrounding extracellular matrix, nor by the potential epithelial-mesenchymal cross-talk. The engineered platform highlights the importance of addressing the mechanical microenvironment of the native organ, to potentiate an organ-level response of the artificial tissue. The proposed SoC represents an appealing tool in personalized medicine, with bio-relevance for the study of gastric diseases and an alternative to current animal models.


Subject(s)
Cell Culture Techniques , Extracellular Matrix , Animals , Humans , Extracellular Matrix/chemistry , Microfluidics , Stomach , Lab-On-A-Chip Devices
5.
Cancers (Basel) ; 14(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36291838

ABSTRACT

Colorectal cancer (CRC) has been addressed in the framework of molecular, cellular biology, and biochemical traits. A new approach to studying CRC is focused on the relationship between biochemical pathways and biophysical cues, which may contribute to disease understanding and therapy development. Herein, we investigated the mechanical properties of CRC cells, namely, HCT116, HCT15, and SW620, using static and dynamic methodologies by atomic force microscopy (AFM). The static method quantifies Young's modulus; the dynamic method allows the determination of elasticity, viscosity, and fluidity. AFM results were correlated with confocal laser scanning microscopy and cell migration assay data. The SW620 metastatic cells presented the highest Young's and storage moduli, with a defined cortical actin ring with distributed F-actin filaments, scarce vinculin expression, abundant total focal adhesions (FAK), and no filopodia formation, which could explain the lessened migratory behavior. In contrast, HCT15 cells presented lower Young's and storage moduli, high cortical tubulin, less cortical F-actin and less FAK, and more filopodia formation, probably explaining the higher migratory behavior. HCT116 cells presented Young's and storage moduli values in between the other cell lines, high cortical F-actin expression, intermediate levels of total FAK, and abundant filopodia formation, possibly explaining the highest migratory behavior.

6.
Polymers (Basel) ; 14(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36015652

ABSTRACT

Polycaprolactone (PCL) is widely used in tissue engineering due to its interesting properties, namely biocompatibility, biodegradability, elastic nature, availability, cost efficacy, and the approval of health authorities such as the American Food and Drug Administration (FDA). The PCL degradation rate is not the most adequate for specific applications such as skin regeneration due to the hydrophobic nature of bulk PCL. However, PCL electrospun fiber meshes, due to their low diameters resulting in high surface area, are expected to exhibit a fast degradation rate. In this work, in vitro and in vivo degradation studies were performed over 90 days to evaluate the potential of electrospun PCL as a wound dressing. Enzymatic and hydrolytic degradation studies in vitro, performed in a static medium, demonstrated the influence of lipase, which promoted a rate of degradation of 97% for PCL meshes. In an in vivo scenario, the degradation was slower, although the samples were not rejected, and were well-integrated in the surrounding tissues inside the subcutaneous pockets specifically created.

7.
Int J Pharm ; 623: 121938, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35728716

ABSTRACT

Customized cationic oil-in-water nanoemulsions (NEs) have been produced to improve the bioavailability of poorly water-soluble drugs, such as triamcinolone acetonide (TA). TA is a synthetic glucocorticoid with anti-inflammatory and antiangiogenic therapeutic properties and it is widely used as an effective treatment in ocular disorders. In this work, TA-NEs were characterized using two different custom-made cationic surfactants, showing a high positive surface charge favouring corneal penetration and a particle size below 300 nm. Both TA-NE formulations demonstrated to be stable at 4 °C during the first months of storage. Furthermore, TA-NEs were able to produce antiangiogenic effects in chicken membranes. The TA-NEs safety profile was evaluated using in vitro and in vivo ocular tolerance tests. Out of the two formulations, the one showing no irritant effects was screened in vivo demonstrating capacity to ameliorate ocular inflammation in New Zealand rabbits significantly, specially to reduce the risk of ocular inflammation processes, with antiangiogenic activity, and can therefore be exploited as a suitable formulation to avoid inflammatory reactions upon ocular surgical procedures, such as cataracts.


Subject(s)
Corneal Neovascularization , Triamcinolone Acetonide , Animals , Cations , Cornea , Corneal Neovascularization/drug therapy , Drug Delivery Systems , Inflammation/drug therapy , Rabbits , Water
8.
Cancers (Basel) ; 14(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35454852

ABSTRACT

In this review, the mechanobiology of colorectal cancer (CRC) are discussed. Mechanotransduction of CRC is addressed considering the relationship of several biophysical cues and biochemical pathways. Mechanobiology is focused on considering how it may influence epithelial cells in terms of motility, morphometric changes, intravasation, circulation, extravasation, and metastization in CRC development. The roles of the tumor microenvironment, ECM, and stroma are also discussed, taking into account the influence of alterations and surface modifications on mechanical properties and their impact on epithelial cells and CRC progression. The role of cancer-associated fibroblasts and the impact of flow shear stress is addressed in terms of how it affects CRC metastization. Finally, some insights concerning how the knowledge of biophysical mechanisms may contribute to the development of new therapeutic strategies and targeting molecules and how mechanical changes of the microenvironment play a role in CRC disease are presented.

9.
Int J Pharm ; 617: 121615, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35217072

ABSTRACT

Age-related macular degeneration (AMD) is defined as a degenerative, progressive and multifactorial disorder that affects the macula with a complex etiology. The retinal pigment epithelium is a monolayer of cells that has the function to separate the surface of the choroid from the neural retina that is involved in the signal transduction leading to vision. The blood-aqueous barrier and the blood retinal barrier limit the permeation of drugs into the retina and thereby reducing their efficacy. Triamcinolone acetonide (TA) is widely used as anti-inflammatory and immunomodulatory drug that promotes the inhibition of the inflammatory processes. The factors that stimulate or inhibit angiogenesis in AMD create a local balance that is responsible for the growth of sub-retinal neovascularization. In AMD, the main angiogenic stimulus is the vascular endothelial growth factor (VEGF). In this work, nanoemulsions with cationic surfactants (mono- and dicationic DABCO and quinuclidine) were produced to deliver TA, and were found to reduce the production of tumor necrosis factor alpha (TNF-α), which stimulates the choroidal neovascularization development by upregulating the VEGF production, and consequently decreased the VEGF levels. Our results support the potential use of mono- and dicationic DABCO and quinuclidine-based cationic nanoemulsions for the delivery of TA in the treatment of AMD.


Subject(s)
Choroidal Neovascularization , Vascular Endothelial Growth Factor A , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Choroidal Neovascularization/drug therapy , Epithelial Cells/metabolism , Humans , Oxidative Stress , Permeability , Retinal Pigments/metabolism , Retinal Pigments/pharmacology , Retinal Pigments/therapeutic use , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factors/metabolism , Vascular Endothelial Growth Factors/pharmacology , Vascular Endothelial Growth Factors/therapeutic use
10.
Pharmaceutics ; 13(10)2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34683945

ABSTRACT

Quaternary derivatives of 1,4-diazabicyclo[2.2.2]octane (DABCO) and of quinuclidine surfactants were used to develop oil-in-water nanoemulsions with the purpose of selecting the best long-term stable nanoemulsion for the ocular administration of triamcinolone acetonide (TA). The combination of the best physicochemical properties (i.e., mean droplet size, polydispersity index, zeta potential, osmolality, viscoelastic properties, surface tension) was considered, together with the cell viability assays in ARPE-19 and HMC3 cell lines. Surfactants with cationic properties have been used to tailor the nanoemulsions' surface for site-specific delivery of drugs to the ocular structure for the delivery of TA. They are tailored for the eye because they have cationic properties that interact with the anionic surface of the eye.

11.
Adv Sci (Weinh) ; 8(8): 2003273, 2021 04.
Article in English | MEDLINE | ID: mdl-33898174

ABSTRACT

Organ-on-a-chip technology promises to revolutionize how pre-clinical human trials are conducted. Engineering an in vitro environment that mimics the functionality and architecture of human physiology is essential toward building better platforms for drug development and personalized medicine. However, the complex nature of these devices requires specialized, time consuming, and expensive fabrication methodologies. Alternatives that reduce design-to-prototype time are needed, in order to fulfill the potential of these devices. Here, a streamlined approach is proposed for the fabrication of organ-on-a-chip devices with incorporated microactuators, by using an adaptation of xurography. This method can generate multilayered, membrane-integrated biochips in a matter of hours, using low-cost benchtop equipment. These devices are capable of withstanding considerable pressure without delamination. Furthermore, this method is suitable for the integration of flexible membranes, required for organ-on-a-chip applications, such as mechanical actuation or the establishment of biological barrier function. The devices are compatible with cell culture applications and present no cytotoxic effects or observable alterations on cellular homeostasis. This fabrication method can rapidly generate organ-on-a-chip prototypes for a fraction of cost and time, in comparison to conventional soft lithography, constituting an interesting alternative to the current fabrication methods.


Subject(s)
Cell Culture Techniques/methods , Elastomers , Equipment Design/methods , Lab-On-A-Chip Devices , Cell Line, Tumor , Humans , Vacuum
12.
Nanomaterials (Basel) ; 11(2)2021 Jan 23.
Article in English | MEDLINE | ID: mdl-33498669

ABSTRACT

Gastric cancer (GC) remains a major cause of death worldwide mainly because of the late detection in advanced stage. Recently, we proposed CD44v6 as a relevant marker for early detection of GC, opening new avenues for GC-targeted theranostics. Here, we designed a modular nanoscale system that selectively targets CD44v6-expressing GC cells by the site-oriented conjugation of a new-engineered CD44v6 half-antibody fragment to maleimide-modified polystyrene nanoparticles (PNPs) via an efficient bioorthogonal thiol-Michael addition click chemistry. PNPs with optimal particle size (200 nm) for crossing a developed biomimetic CD44v6-associated GC stromal model were further modified with a heterobifunctional maleimide crosslinker and click conjugated to the novel CD44v6 half-antibody fragment, obtained by chemical reduction of full antibody, without affecting its bioactivity. Collectively, our results confirmed the specific targeting ability of CD44v6-PNPs to CD44v6-expressing cells (1.65-fold higher than controls), highlighting the potential of CD44v6 half-antibody conjugated nanoparticles as promising and clinically relevant tools for the early diagnosis and therapy of GC. Additionally, the rational design of our nanoscale system may be explored for the development of several other nanotechnology-based disease-targeted approaches.

13.
Nanomedicine ; 33: 102353, 2021 04.
Article in English | MEDLINE | ID: mdl-33421622

ABSTRACT

This study reflects an exploitation of a composite matrix produced by electrospinning of collagen and electrospraying of nanophased hydroxyapatite (nanoHA), for skin regeneration applications. The main goal was to evaluate the effect of nanoHA, as source of localized calcium delivery, on human dermal fibroblasts, keratinocytes, and human mesenchymal stem cells (hMSCs) growth, proliferation, differentiation, and extracellular matrix production. This study revealed that calcium ions provided by nanoHA significantly enhanced cellular growth and proliferation rates and prevented adhesion of pathogenic bacteria strains typically found in human skin flora. Moreover, hMSCs were able to differentiate in both osteogenic and adipogenic lineages. Rat subcutaneous implantation of the membranes also revealed that no adverse reaction occurred. Therefore, the mechanically fit composite membrane presents a great potential to be used either as cell transplantation scaffold for skin wound regeneration or as wound dressing material in plastic surgery, burns treatment or skin diseases.


Subject(s)
Biocompatible Materials/chemistry , Collagen/chemistry , Durapatite/chemistry , Nanofibers/chemistry , Tissue Scaffolds/chemistry , Animals , Cell Differentiation , Cell Proliferation , Drug Carriers , Durapatite/pharmacology , Extracellular Matrix , Fibroblasts , Humans , Keratinocytes/metabolism , Mesenchymal Stem Cells/metabolism , Osteogenesis , Rats , Regeneration , Skin , Wound Healing
14.
Adv Healthc Mater ; 10(2): e2001176, 2021 01.
Article in English | MEDLINE | ID: mdl-33135399

ABSTRACT

The properties of the surrounding cell environment are major determinants of cell response in 3D. However, the ability to unravel how these cues dictate the biological function in bioprinted constructs is limited by the lack of extracellular matrix (ECM)-mimetic bioinks with fully controllable properties. In this study, a multifunctional bioink that uniquely combines the independent control over the biochemical and biophysical cues that regulate cell fate with the bioorthogonal nature of thiol-norbornene photoclick chemistry is designed for the extrusion bioprinting of bioinspired 3D cellular niches with tunable properties. The bioink rheology is controlled by ionic gelation, being dependent on both the type and content of divalent ions (calcium and barium), while the mechanical and biochemical properties of hydrogels are tailored via a post printing thiol-ene reaction. Bioprinted cell-adhesive and protease-degradable hydrogels modulate cell proliferation and ECM deposition in a matrix-stiffness dependent manner over 14 days of culture regardless of cell spreading, demonstrating the ability to probe the effect of matrix cues on cell response. This bioink can be used as a versatile platform where building blocks can be rationally combined for the bioprinting of functional cell- and tissue-specific constructs with controlled cellular behavior.


Subject(s)
Bioprinting , Cues , Hydrogels , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
15.
J Control Release ; 329: 237-256, 2021 01 10.
Article in English | MEDLINE | ID: mdl-33259853

ABSTRACT

Despite its complexity, the human body is composed of only four basic tissue types, namely epithelial, connective, muscular and nervous tissues. Notably, each tissue is an assemblage of similarly functional cells united in performing a specific function. Instead of mimicking functionality mechanically, three-dimensional (3D) bioprinting based on histological categories is a strategy designed with multiple materials and techniques, which is a versatile technology able to form functional organ structures in line with simplicity. This review aims to provide an overview of tissue-specific 3D bioprinting based on the biological characteristics of four tissue types, including the histological features, biomaterials and corresponding applications. It first briefly introduces the goals of tissue-specific bioprinting and then summarizes the major techniques and identification of particular material development. Moreover, its remarkable regenerative power in replacement therapy and novel outbreak in particular tissues are assembled by epithelial, connective, nerve and muscle tissues. Finally, we discuss challenges and future prospects of tissue-specific based 3D bioprinting in biomedicine, hoping to further inspire the development.


Subject(s)
Bioprinting , Biocompatible Materials , Humans , Printing, Three-Dimensional , Regenerative Medicine , Tissue Engineering
16.
J Cell Biochem ; 122(1): 116-129, 2021 01.
Article in English | MEDLINE | ID: mdl-32748513

ABSTRACT

Interactions between cell types, growth factors, and extracellular matrix components involved in angiogenesis are crucial for new vessel formation leading to tissue regeneration. This study investigated whether cocultures of fibroblasts and endothelial cells (ECs; from macro- or microvasculature) play a role in the formation of microvessel-like structures by ECs, as well as modulate fibroblast differentiation and growth factors production (vascular endothelial cell growth factor, basic fibroblast growth factor, active transforming growth factor-ß1, and interleukin-8), which are important for vessel sprouting and maturation. Data obtained revealed that in vitro coculture systems of fibroblasts and human ECs stimulate collagen synthesis and growth factors production by fibroblasts that ultimately affect the formation and distribution of microvessel-like structures in cell cultures. In this study, areas with activated fibroblasts and high alkaline phosphatase (ALP) activity were also observed in cocultures. Molecular docking assays revealed that ALP has two binding positions for collagen, suggesting its impact in collagen proteins' aggregation, cell migration, and microvessel assembly. These findings indicate that bioinformatics and coculture systems are complementary tools for investigating the participation of proteins, like collagen and ALP in angiogenesis.


Subject(s)
Alkaline Phosphatase/metabolism , Cell Movement , Collagen/metabolism , Endothelium, Vascular/physiology , Fibroblasts/physiology , Microvessels/physiology , Neovascularization, Physiologic , Alkaline Phosphatase/chemistry , Binding Sites , Cell Differentiation , Cell Proliferation , Cells, Cultured , Endothelium, Vascular/cytology , Fibroblasts/cytology , Humans , In Vitro Techniques , Microvessels/cytology , Protein Conformation
17.
Cancers (Basel) ; 12(4)2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32252293

ABSTRACT

CD44v6-containing isoforms are frequently de novo expressed in gastric cancer (GC). Whether CD44v6 has a central role in GC transformation and/or progression, whether it conditions response to therapy or whether it is only a bystander marker is still not known. Therefore, we aimed to clarify the role of CD44v6 in GC. We generated GC isogenic cell lines stably expressing CD44s or CD44v6 and tested them for different cancer hallmarks and response to cisplatin, and we further confirmed our findings in cells that endogenously express CD44v6. No correlation between overexpression of CD44v6 and the tested cancer hallmarks was observed, suggesting CD44v6 is not a driver of GC progression. Upon cisplatin treatment, CD44v6+ cells survive better and have lower apoptosis levels than CD44v6- cells, possibly due to concomitant activation of STAT3 and P38. In co-culture experiments, we discovered that CD44v6+ cells are involved in GC cell overgrowth after cisplatin treatment. In conclusion, we show that CD44v6 expression increases cell survival in response to cisplatin treatment in GC cells and that these cells override CD44v6-negative cells after cisplatin-treatment. This suggests that tumor expression of CD44v6-containing variants may condition the outcome of GC patients treated with chemotherapy.

18.
Mater Sci Eng C Mater Biol Appl ; 109: 110537, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32228892

ABSTRACT

Implantable medical devices infection and consequent failure is a severe health issue, which can result from bacterial adhesion, growth, and subsequent biofilm formation at the implantation site. Graphene-based materials, namely graphene oxide (GO), have been described as potential antibacterial agents when immobilized and exposed in polymeric matrices. This work focuses on the development of antibacterial and biocompatible 3D fibrous scaffolds incorporating GO. Poly(ε-caprolactone) scaffolds were produced, with and without GO, using wet-spinning combined with additive manufacturing. Scaffolds with different GO loadings were evaluated regarding physical-chemical characterization, namely GO surface exposure, antibacterial properties, and ability to promote human cells adhesion. Antimicrobial properties were evaluated through live/dead assays performed with Gram-positive and Gram-negative bacteria. 2 h and 24 h adhesion assays revealed a time-dependent bactericidal effect in the presence of GO, with death rates of adherent S. epidermidis and E. coli reaching ~80% after 24 h of contact with scaffolds with the highest GO concentration. Human fibroblasts cultured for up to 14 days were able to adhere and spread over the fibers, independently of the presence of GO. Overall, this work demonstrates the potential of GO-containing fibrous scaffolds to be used as biomaterials that hinder bacterial infection, while allowing human cells adhesion.


Subject(s)
Anti-Infective Agents , Escherichia coli/growth & development , Graphite , Polyesters , Printing, Three-Dimensional , Staphylococcus epidermidis/growth & development , Tissue Scaffolds/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Graphite/chemistry , Graphite/pharmacology , Humans , Polyesters/chemistry , Polyesters/pharmacology
19.
Front Cell Dev Biol ; 8: 54, 2020.
Article in English | MEDLINE | ID: mdl-32117980

ABSTRACT

Skin is the largest organ of the human body with several important functions that can be impaired by injury, genetic or chronic diseases. Among all skin diseases, melanoma is one of the most severe, which can lead to death, due to metastization. Mechanotransduction has a crucial role for motility, invasion, adhesion and metastization processes, since it deals with the response of cells to physical forces. Signaling pathways are important to understand how physical cues produced or mediated by the Extracellular Matrix (ECM), affect healthy and tumor cells. During these processes, several molecules in the nucleus and cytoplasm are activated. Melanocytes, keratinocytes, fibroblasts and the ECM, play a crucial role in melanoma formation. This manuscript will address the synergy among melanocytes, keratinocytes, fibroblasts cells and the ECM considering their mechanical contribution and relevance in this disease. Mechanical properties of melanoma cells can also be influenced by pigmentation, which can be associated with changes in stiffness. Mechanical changes can be related with the adhesion, migration, or invasiveness potential of melanoma cells promoting a high metastization capacity of this cancer. Mechanosensing, mechanotransduction, and mechanoresponse will be highlighted with respect to the motility, invasion, adhesion and metastization in melanoma cancer.

20.
Trends Biotechnol ; 38(3): 292-315, 2020 03.
Article in English | MEDLINE | ID: mdl-31787346

ABSTRACT

Hydrogels can mimic several features of the cell native microenvironment and have been widely used as synthetic extracellular matrices (ECMs) in tissue engineering and regenerative medicine (TERM). However, some applications have specifications that hydrogels cannot efficiently fulfill on their own. Incorporating reinforcing structures like fibrous scaffolds or particles into hydrogels, as hybrid systems, is a promising strategy to improve their functionality. We describe recent advances in the fabrication and application of these hybrid systems, where structural properties and stimuli responsiveness of hydrogels are enhanced while their ECM-like features are preserved. Furthermore, we discuss how these systems can contribute to the development of more complex tissue engineered structures in the rapidly evolving field of TERM.


Subject(s)
Extracellular Matrix/chemistry , Hydrogels/chemistry , Tissue Engineering/methods , Animals , Biomimetic Materials/chemistry , Bone and Bones , Cartilage , Humans , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...