Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biosensors (Basel) ; 13(12)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38131757

ABSTRACT

This work devised a simple glycerol-assisted synthesis of a low-Cu2+-doped CoFe2O4 and the electrochemical detection of acetaminophen (AC). During the synthesis, several polyalcohols were tested, indicating the efficiency of glycerin as a cosolvent, aiding in the creation of electrode-modifier nanomaterials. A duration of standing time (eight hours) before calcination produces a decrease in the secondary phase of hematite. The synthesized material was used as an electrode material in the detection of AC. In acidic conditions (pH 2.5), the limit of detection (LOD) was 99.4 nM, while the limit of quantification (LOQ) was found to be (331 nM). The relative standard deviation (RSD), 3.31%, was computed. The enhanced electrocatalytic activity of a low-Cu2+-doped CoFe2O4-modified electrode Cu0.13Co0.87Fe2O4/GCE corresponds extremely well with its resistance Rct, which was determined using the electrochemical impedance spectroscopy (EIS) technique and defined its electron transfer capacity. The possibility of a low-Cu2+-doped CoFe2O4 for the electrochemical sensing of AC in human urine samples was studied. The recovery rates ranging from 96.5 to 101.0% were obtained. These findings suggested that the Cu0.13Co0.87Fe2O4/GCE sensor has outstanding practicability and could be utilized to detect AC content in real complex biological samples.


Subject(s)
Acetaminophen , Nanostructures , Humans , Glycerol , Electrochemical Techniques/methods , Electrodes , Limit of Detection
2.
Molecules ; 27(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35268653

ABSTRACT

This study used substituted barium hexaferrites, which were previously prepared and reported by the authors, to detect acetaminophen by the modification of a conventional glassy carbon electrode (GCE), which led to promising results. The synthesis of this electrode-modifying material was conducted using a citrate sol gel process. A test synthesis using glycerin and propylene glycol revealed that glycerin produced a better result, while less positive anodic potential values were associated with the electrooxidation of N-acetyl-p-aminophenol (NAP). Excellent electroactivity was exhibited by the cobalt-substituted barium-hexaferrite-nanomaterial-modified electrode. A good linear relationship between the concentration and the current response of acetaminophen (paracetamol) was obtained with a detection limit of (0.255 ± 0.005) µM for the Ba1.0Co1.22Fe11.41O18.11 GCE, (0.577 ± 0.007) µM for the Ba1.14Cu0.82Fe11.65O18.02 GCE, and (0.595 ± 0.008) µM for the bare GCE. The levels of NAP in a real sample of urine were quantitatively analyzed using the proposed method, with recovery ranges from 96.6% to 101.0% and 93.9% to 98.4% for the modified electrode with Cobalt-substituted barium hexaferrites (CoFM) and Copper-substituted barium hexaferrites (CuFM), respectively. These results confirm the high electrochemical activity of Ba1.0Co1.22Fe11.41O18.11 nanoparticles and thus their potential for use in the development of sensing devices for substances of pharmaceutical interest, such as acetaminophen (NAP).


Subject(s)
Acetaminophen
SELECTION OF CITATIONS
SEARCH DETAIL