Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 77(17): 6158-64, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21724890

ABSTRACT

Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables.


Subject(s)
Bacteria/growth & development , Biodiversity , Ecosystem , Environmental Restoration and Remediation , Fungi/growth & development , Soil Microbiology , Bacteria/classification , Bacteria/genetics , DNA, Bacterial/genetics , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Eucalyptus/growth & development , Fungi/classification , Fungi/genetics , Microarray Analysis , RNA, Ribosomal, 16S/genetics , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...