Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol ; 8(5): R80, 2007.
Article in English | MEDLINE | ID: mdl-17501990

ABSTRACT

BACKGROUND: Four hypervariable minisatellite loci were scored on a panel of 116 individuals of various geographical origins representing a large part of the diversity present in house mouse subspecies. Internal structures of alleles were determined by minisatellite variant repeat mapping PCR to produce maps of intermingled patterns of variant repeats along the repeat array. To reconstruct the genealogy of these arrays of variable length, the specifically designed software MS_Align was used to estimate molecular divergences, graphically represented as neighbor-joining trees. RESULTS: Given the high haplotypic diversity detected (mean He = 0.962), these minisatellite trees proved to be highly informative for tracing past and present genetic exchanges. Examples of identical or nearly identical alleles were found across subspecies and in geographically very distant locations, together with poor lineage sorting among subspecies except for the X-chromosome locus MMS30 in Mus mus musculus. Given the high mutation rate of mouse minisatellite loci, this picture cannot be interpreted only with simple splitting events followed by retention of polymorphism, but implies recurrent gene flow between already differentiated entities. CONCLUSION: This strongly suggests that, at least for the chromosomal regions under scrutiny, wild house mouse subspecies constitute a set of interrelated gene pools still connected through long range gene flow or genetic exchanges occurring in the various contact zones existing nowadays or that have existed in the past. Identifying genomic regions that do not follow this pattern will be a challenging task for pinpointing genes important for speciation.


Subject(s)
Genetic Variation , Minisatellite Repeats , Polymorphism, Genetic , Animals , Gene Flow , Haplotypes , Mice , Software , Species Specificity
2.
Hepatology ; 44(1): 174-85, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16799992

ABSTRACT

Polymorphisms of genes linked to iron metabolism may account for individual variability in hemochromatosis and iron status connected with liver and cardiovascular diseases, cancers, toxicity, and infection. Mouse strains exhibit marked differences in levels of non-heme iron, with C57BL/6J and SWR showing low and high levels, respectively. The genetic basis for this variability was examined using quantitative trait loci (QTL) analysis together with expression profiling and chromosomal positions of known iron-related genes. Non-heme iron levels in liver and spleen of C57BL/6J x SWR F2 mice were poorly correlated, indicating independent regulation. Highly significant (P < .01) polymorphic loci were found on chromosomes 2 and 16 for liver and on chromosomes 8 and 9 for spleen. With sex as a covariate, additional significant or suggestive (P < 0.1) QTL were detected on chromosomes 7, 8, 11, and 19 for liver and on chromosome 2 for spleen. A gene array showed no clear association between most loci and differential iron-related gene expression. The gene for transferrin and a transferrin-like gene map close to the QTL on chromosome 9. Transferrin saturation was significantly lower in C57BL/6J mice than in SWR mice, but there was no significant difference in the serum level of transferrin, hepatic expression, or functional change in cDNA sequence. beta2-Microglobulin, which, unlike other loci, was associated with C57BL/6J alleles, is a candidate for the chromosome 2 QTL for higher iron. In conclusion, the findings show the location of polymorphic genes that determine basal iron status in wild-type mice. Human equivalents may be pertinent in predisposition to hepatic and other disorders.


Subject(s)
Hemochromatosis/genetics , Iron/metabolism , Liver/metabolism , Polymorphism, Genetic , Quantitative Trait Loci , RNA, Messenger/genetics , Spleen/metabolism , Animals , Chromosomes, Mammalian/genetics , Genetic Predisposition to Disease , Genotype , Hemochromatosis/metabolism , Hemochromatosis/pathology , Mice , Mice, Inbred C57BL , Transferrin/metabolism
3.
Genomics ; 80(1): 2-4, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12079275

ABSTRACT

Minisatellites provide very informative systems for analyzing processes of tandem repeat DNA turnover in humans. The mouse genome also contains authentic minisatellites, but none has yet been found to show high levels of instability. Indirect evidence using minisatellite variant repeat mapping by PCR in Mus musculus subspecies suggested that mouse minisatellites mutate at a rate below 10(-3) per gamete and mainly by intra-allelic events. This is in sharp contrast to the complex interallelic mutations observed at high frequency at some human loci. To define more directly the turnover mechanisms and rates of instability at one of the most variable mouse minisatellites (MMS80), we used size-enrichment small-pool PCR (SESP-PCR) to recover de novo mutant alleles from sperm DNA from homozygous BALB/cJ mice and from strain DHA heterozygotes. The sperm mutation rate at MMS80 was extremely low, at or below 5 x 10(-6) per sperm. Comparison of progenitor and mutant allele structures showed that these rare mutants had arisen by simple and primarily, if not exclusively, intra-allelic mutation events. These results suggest a fundamental difference in turnover mechanisms at minisatellites between mice and human.


Subject(s)
Minisatellite Repeats , Mutation , Spermatozoa , Animals , Base Sequence , DNA , Male , Mice , Mice, Inbred BALB C , Molecular Sequence Data
4.
Mutat Res ; 500(1-2): 147-56, 2002 Mar 20.
Article in English | MEDLINE | ID: mdl-11890944

ABSTRACT

Expanded simple tandem repeat (ESTR) loci include some of the most unstable DNA in the mouse genome and have been extensively used in pedigree studies of germline mutation. We now show that repeat DNA instability at the mouse ESTR locus Ms6-hm can also be monitored by single molecule PCR analysis of genomic DNA. Unlike unstable human minisatellites which mutate almost exclusively in the germline by a meiotic recombination-based process, mouse Ms6-hm shows repeat instability both in germinal (sperm) DNA and in somatic (spleen, brain) DNA. There is no significant variation in mutation frequency between mice of the same inbred strain. However, significant variation occurs between tissues, with mice showing the highest mutation frequency in sperm. The size spectra of somatic and sperm mutants are indistinguishable and heavily biased towards gains and losses of only a few repeat units, suggesting repeat turnover by a mitotic replication slippage process operating both in the soma and in the germline. Analysis of male mice following acute pre-meiotic exposure to X-rays showed a significant increase in sperm but not somatic mutation frequency, though no change in the size spectrum of mutants. The level of radiation-induced mutation at Ms6-hm was indistinguishable from that established by conventional pedigree analysis following paternal irradiation. This confirms that mouse ESTR loci are very sensitive to ionizing radiation and establishes that induced germline mutation results from radiation-induced mutant alleles being present in sperm, rather than from unrepaired sperm DNA lesions that subsequently lead to the appearance of mutants in the early embryo. This single molecule monitoring system has the potential to substantially reduce the number of mice needed for germline mutation monitoring, and can be used to study not only germline mutation but also somatic mutation in vivo and in cell culture.


Subject(s)
Mutation , Tandem Repeat Sequences/radiation effects , Animals , Brain/radiation effects , DNA Mutational Analysis , DNA Primers , Epididymis/radiation effects , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Polymerase Chain Reaction , Spermatozoa/radiation effects , Spleen/radiation effects , Tandem Repeat Sequences/genetics , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...