Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Prog Nucl Magn Reson Spectrosc ; 129: 28-106, 2022 04.
Article in English | MEDLINE | ID: mdl-35292133

ABSTRACT

A 'principles and practice' tutorial-style review of the application of solution-phase NMR in the analysis of the mechanisms of homogeneous organic and organometallic reactions and processes. This review of 345 references summarises why solution-phase NMR spectroscopy is uniquely effective in such studies, allowing non-destructive, quantitative analysis of a wide range of nuclei common to organic and organometallic reactions, providing exquisite structural detail, and using instrumentation that is routinely available in most chemistry research facilities. The review is in two parts. The first comprises an introduction to general techniques and equipment, and guidelines for their selection and application. Topics include practical aspects of the reaction itself, reaction monitoring techniques, NMR data acquisition and processing, analysis of temporal concentration data, NMR titrations, DOSY, and the use of isotopes. The second part comprises a series of 15 Case Studies, each selected to illustrate specific techniques and approaches discussed in the first part, including in situ NMR (1/2H, 10/11B, 13C, 15N, 19F, 29Si, 31P), kinetic and equilibrium isotope effects, isotope entrainment, isotope shifts, isotopes at natural abundance, scalar coupling, kinetic analysis (VTNA, RPKA, simulation, steady-state), stopped-flow NMR, flow NMR, rapid injection NMR, pure shift NMR, dynamic nuclear polarisation, 1H/19F DOSY NMR, and in situ illumination NMR.


Subject(s)
Isotopes , Kinetics , Magnetic Resonance Spectroscopy/methods
2.
J Am Chem Soc ; 142(34): 14649-14663, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32786804

ABSTRACT

The mechanism of CF2 transfer from TMSCF3 (1), mediated by TBAT (2-12 mol %) or by NaI (5-20 mol %), has been investigated by in situ/stopped-flow 19F NMR spectroscopic analysis of the kinetics of alkene difluorocyclopropanation and competing TFE/c-C3F6/homologous perfluoroanion generation, 13C/2H KIEs, LFERs, CF2 transfer efficiency and selectivity, the effect of inhibitors, and density functional theory (DFT) calculations. The reactions evolve with profoundly different kinetics, undergoing autoinhibition (TBAT) or quasi-stochastic autoacceleration (NaI) and cogenerating perfluoroalkene side products. An overarching mechanism involving direct and indirect fluoride transfer from a CF3 anionoid to TMSCF3 (1) has been elucidated. It allows rationalization of why the NaI-mediated process is more effective for less-reactive alkenes and alkynes, why a large excess of TMSCF3 (1) is required in all cases, and why slow-addition protocols can be of benefit. Issues relating to exothermicity, toxicity, and scale-up are also noted.

SELECTION OF CITATIONS
SEARCH DETAIL
...