Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Circ Cardiovasc Interv ; 17(5): e013898, 2024 May.
Article in English | MEDLINE | ID: mdl-38533653

ABSTRACT

BACKGROUND: Acute aortic regurgitation is life-threatening with few nonsurgical options for immediate stabilization. We propose Trans-Aortic Balloon to Ease Regurgitation Applying Counter-Pulsation (TABERNACL), a simple, on-table temporary valve using commercially available equipment to temporize acute severe aortic regurgitation. METHODS: We hypothesize that an appropriately sized commercial balloon dilatation catheter-straddling the aortic annulus and connected to a counterpulsation console-can serve as a temporizing valve to restore hemodynamic stability in acute aortic regurgitation. We performed benchtop testing of valvuloplasty, angioplasty, and sizing balloons as counterpulsation balloons. TABERNACL was assessed in vivo in a porcine model of acute aortic regurgitation (n=8). We also tested a static undersized, continuously inflated transvalvular balloon as a spacer intended physically to obstruct the regurgitant orifice. RESULTS: Benchtop testing identified that Tyshak II and PTS sizing (NuMed Braun) balloon catheters performed adequately as temporary valves (ie, complete inflation and deflation with each cycle) and resisted fatigue, in contrast to others. When TABERNACL was used in the acute severe regurgitation animals, there was immediate hemodynamic improvement, with a significant 35% increase in diastolic aortic pressure by 16 mm Hg ([95% CI, 7-25] P=0.0056), 34% reduction in left ventricular end-diastolic pressure by -7 mm Hg ([95% CI, -10 to -5] P=0.0006), improvement in the aortic diastolic index by 0.28 ([95% CI, 0.18-0.39] P=0.0009), and reversal of electrocardiographic myocardial ischemia. As an alternative, static balloon inflation across the aortic valve stabilized regurgitation hemodynamics at the expense of a new aortic gradient and caused excessive ectopy from balloon movement in the left ventricular outflow tract. CONCLUSIONS: TABERNACL improves hemodynamics and reduces coronary ischemia by electrocardiography in animals with acute severe aortic regurgitation. TABERNACL valves obstruct the diastolic regurgitant orifice without systolic obstruction. This may prove a lifesaving bridge to definitive valve replacement therapy.


Subject(s)
Aortic Valve Insufficiency , Balloon Valvuloplasty , Disease Models, Animal , Hemodynamics , Animals , Hemodynamics/drug effects , Aortic Valve Insufficiency/physiopathology , Aortic Valve Insufficiency/etiology , Aortic Valve Insufficiency/diagnostic imaging , Sus scrofa , Aortic Valve/physiopathology , Aortic Valve/surgery , Aortic Valve/diagnostic imaging , Equipment Design , Recovery of Function , Acute Disease , Cardiac Catheters , Time Factors , Severity of Illness Index , Ventricular Function, Left/drug effects
2.
J Cardiovasc Magn Reson ; 25(1): 48, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37574552

ABSTRACT

Transcatheter cardiovascular interventions increasingly rely on advanced imaging. X-ray fluoroscopy provides excellent visualization of catheters and devices, but poor visualization of anatomy. In contrast, magnetic resonance imaging (MRI) provides excellent visualization of anatomy and can generate real-time imaging with frame rates similar to X-ray fluoroscopy. Realization of MRI as a primary imaging modality for cardiovascular interventions has been slow, largely because existing guidewires, catheters and other devices create imaging artifacts and can heat dangerously. Nonetheless, numerous clinical centers have started interventional cardiovascular magnetic resonance (iCMR) programs for invasive hemodynamic studies or electrophysiology procedures to leverage the clear advantages of MRI tissue characterization, to quantify cardiac chamber function and flow, and to avoid ionizing radiation exposure. Clinical implementation of more complex cardiovascular interventions has been challenging because catheters and other tools require re-engineering for safety and conspicuity in the iCMR environment. However, recent innovations in scanner and interventional device technology, in particular availability of high performance low-field MRI scanners could be the inflection point, enabling a new generation of iCMR procedures. In this review we review these technical considerations, summarize contemporary clinical iCMR experience, and consider potential future applications.


Subject(s)
Cardiac Catheterization , Magnetic Resonance Imaging, Interventional , Humans , Predictive Value of Tests , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
3.
J Cardiovasc Magn Reson ; 20(1): 41, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29925397

ABSTRACT

BACKGROUND: Cardiovascular magnetic resonance (CMR) fluoroscopy allows for simultaneous measurement of cardiac function, flow and chamber pressure during diagnostic heart catheterization. To date, commercial metallic guidewires were considered contraindicated during CMR fluoroscopy due to concerns over radiofrequency (RF)-induced heating. The inability to use metallic guidewires hampers catheter navigation in patients with challenging anatomy. Here we use low specific absorption rate (SAR) imaging from gradient echo spiral acquisitions and a commercial nitinol guidewire for CMR fluoroscopy right heart catheterization in patients. METHODS: The low-SAR imaging protocol used a reduced flip angle gradient echo acquisition (10° vs 45°) and a longer repetition time (TR) spiral readout (10 ms vs 2.98 ms). Temperature was measured in vitro in the ASTM 2182 gel phantom and post-mortem animal experiments to ensure freedom from heating with the selected guidewire (150 cm × 0.035″ angled-tip nitinol Terumo Glidewire). Seven patients underwent CMR fluoroscopy catheterization. Time to enter each chamber (superior vena cava, main pulmonary artery, and each branch pulmonary artery) was recorded and device visibility and confidence in catheter and guidewire position were scored on a Likert-type scale. RESULTS: Negligible heating (< 0.07°C) was observed under all in vitro conditions using this guidewire and imaging approach. In patients, chamber entry was successful in 100% of attempts with a guidewire compared to 94% without a guidewire, with failures to reach the branch pulmonary arteries. Time-to-enter each chamber was similar (p=NS) for  the two approaches. The guidewire imparted useful catheter shaft conspicuity and enabled interactive modification of catheter shaft stiffness, however, the guidewire tip visibility was poor. CONCLUSIONS: Under specific conditions, trained operators can apply low-SAR imaging and using a specific fully-insulated metallic nitinol guidewire (150 cm × 0.035" Terumo Glidewire) to augment clinical CMR fluoroscopy right heart catheterization. TRIAL REGISTRATION: Clinicaltrials.gov NCT03152773 , registered May 15, 2017.


Subject(s)
Cardiac Catheterization/instrumentation , Cardiac Catheters , Magnetic Resonance Imaging, Interventional/instrumentation , Alloys , Animals , Cardiac Catheterization/adverse effects , Equipment Design , Hot Temperature , Humans , Magnetic Resonance Imaging, Interventional/adverse effects , Materials Testing , Models, Animal , Phantoms, Imaging , Predictive Value of Tests , Sus scrofa , Time Factors , Workflow
4.
J Cardiovasc Magn Reson ; 19(1): 54, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28750642

ABSTRACT

BACKGROUND: Quantification of cardiac output and pulmonary vascular resistance (PVR) are critical components of invasive hemodynamic assessment, and can be measured concurrently with pressures using phase contrast CMR flow during real-time CMR guided cardiac catheterization. METHODS: One hundred two consecutive patients underwent CMR fluoroscopy guided right heart catheterization (RHC) with simultaneous measurement of pressure, cardiac output and pulmonary vascular resistance using CMR flow and the Fick principle for comparison. Procedural success, catheterization time and adverse events were prospectively collected. RESULTS: RHC was successfully completed in 97/102 (95.1%) patients without complication. Catheterization time was 20 ± 11 min. In patients with and without pulmonary hypertension, baseline mean pulmonary artery pressure was 39 ± 12 mmHg vs. 18 ± 4 mmHg (p < 0.001), right ventricular (RV) end diastolic volume was 104 ± 64 vs. 74 ± 24 (p = 0.02), and RV end-systolic volume was 49 ± 30 vs. 31 ± 13 (p = 0.004) respectively. 103 paired cardiac output and 99 paired PVR calculations across multiple conditions were analyzed. At baseline, the bias between cardiac output by CMR and Fick was 5.9% with limits of agreement -38.3% and 50.2% with r = 0.81 (p < 0.001). The bias between PVR by CMR and Fick was -0.02 WU.m2 with limits of agreement -2.6 and 2.5 WU.m2 with r = 0.98 (p < 0.001). Correlation coefficients were lower and limits of agreement wider during physiological provocation with inhaled 100% oxygen and 40 ppm nitric oxide. CONCLUSIONS: CMR fluoroscopy guided cardiac catheterization is safe, with acceptable procedure times and high procedural success rate. Cardiac output and PVR measurements using CMR flow correlated well with the Fick at baseline and are likely more accurate during physiological provocation with supplemental high-concentration inhaled oxygen. TRIAL REGISTRATION: Clinicaltrials.gov NCT01287026 , registered January 25, 2011.


Subject(s)
Cardiac Catheterization , Cardiac Output , Hypertension, Pulmonary/diagnostic imaging , Magnetic Resonance Imaging, Interventional , Pulmonary Artery/physiopathology , Vascular Resistance , Administration, Inhalation , Adult , Aged , Case-Control Studies , Female , Fluoroscopy , Humans , Hypertension, Pulmonary/physiopathology , Male , Middle Aged , Models, Cardiovascular , Nitric Oxide/administration & dosage , Oxygen/administration & dosage , Predictive Value of Tests , Prospective Studies , Time Factors
5.
Eur Heart J ; 34(5): 380-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22855740

ABSTRACT

AIMS: Real-time MRI creates images with superb tissue contrast that may enable radiation-free catheterization. Simple procedures are the first step towards novel interventional procedures. We aim to perform comprehensive transfemoral diagnostic right heart catheterization in an unselected cohort of patients entirely using MRI guidance. METHODS AND RESULTS: We performed X-ray and MRI-guided transfemoral right heart catheterization in consecutive patients undergoing clinical cardiac catheterization. We sampled both cavae and both pulmonary arteries. We compared success rate, time to perform key steps, and catheter visibility among X-ray and MRI procedures using air-filled or gadolinium-filled balloon-tipped catheters. Sixteen subjects (four with shunt, nine with coronary artery disease, three with other) underwent paired X-ray and MRI catheterization. Complete guidewire-free catheterization was possible in 15 of 16 under both. MRI using gadolinium-filled balloons was at least as successful as X-ray in all procedure steps, more successful than MRI using air-filled balloons, and better than both in entering the left pulmonary artery. Total catheterization time and individual procedure steps required approximately the same amount of time irrespective of image guidance modality. Catheter conspicuity was best under X-ray and next-best using gadolinium-filled MRI balloons. CONCLUSION: In this early experience, comprehensive transfemoral right heart catheterization appears feasible using only MRI for imaging guidance. Gadolinium-filled balloon catheters were more conspicuous than air-filled ones. Further workflow and device enhancement are necessary for clinical adoption.


Subject(s)
Cardiac Catheterization/methods , Heart Diseases/diagnosis , Contrast Media , Feasibility Studies , Female , Gadolinium , Humans , Magnetic Resonance Angiography/methods , Magnetic Resonance Imaging, Interventional/methods , Male , Middle Aged , Pilot Projects , Radiography, Interventional/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...