Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 103(6): 1357-1373, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37632330

ABSTRACT

River sharks (Glyphis spp.) and some sawfishes (Pristidae) inhabit riverine environments, although their long-term habitat use patterns are poorly known. We investigated the diadromous movements of the northern river shark (Glyphis garricki), speartooth shark (Glyphis glyphis), narrow sawfish (Anoxypristis cuspidata), and largetooth sawfish (Pristis pristis) using in situ laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on vertebrae to recover elemental ratios over each individual's lifetime. We also measured elemental ratios for the bull shark (Carcharhinus leucas) and a range of inshore and offshore stenohaline marine species to assist in interpretation of results. Barium (Ba) was found to be an effective indicator of freshwater use, whereas lithium (Li) and strontium (Sr) were effective indicators of marine water use. The relationships between Ba and Li and Ba and Sr were negatively correlated, whereas the relationship between Li and Sr was positively correlated. Both river shark species had elemental signatures indicative of prolonged use of upper-estuarine environments, whereas adults appear to mainly use lower-estuarine environments rather than marine environments. Decreases in Li:Ba and Sr:Ba at the end of the prenatal growth zone of P. pristis samples indicated that parturition likely occurs in fresh water. There was limited evidence of prolonged riverine habitat use for A. cuspidata. The results of this study support elemental-environment relationships observed in teleost otoliths and indicate that in situ LA-ICP-MS elemental characterization is applicable to a wide range of elasmobranch species as a discriminator for use and movement across salinity gradients. A greater understanding of processes that lead to element incorporation in vertebrae, and relative concentrations in vertebrae with respect to the ambient environment, will improve the applicability of elemental analysis to understand movements across the life history of elasmobranchs into the future.


Subject(s)
Sharks , Skates, Fish , Animals , Sharks/metabolism , Ecosystem , Fresh Water/chemistry , Skates, Fish/metabolism , Strontium/analysis , Spine/chemistry
2.
Ecol Evol ; 13(2): e9837, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36844667

ABSTRACT

The Bull Shark (Carcharhinus leucas) faces varying levels of exploitation around the world due to its coastal distribution. Information regarding population connectivity is crucial to evaluate its conservation status and local fishing impacts. In this study, we sampled 922 putative Bull Sharks from 19 locations in the first global assessment of population structure of this cosmopolitan species. Using a recently developed DNA-capture approach (DArTcap), samples were genotyped for 3400 nuclear markers. Additionally, full mitochondrial genomes of 384 Indo-Pacific samples were sequenced. Reproductive isolation was found between and across ocean basins (eastern Pacific, western Atlantic, eastern Atlantic, Indo-West Pacific) with distinct island populations in Japan and Fiji. Bull Sharks appear to maintain gene flow using shallow coastal waters as dispersal corridors, whereas large oceanic distances and historical land-bridges act as barriers. Females tend to return to the same area for reproduction, making them more susceptible to local threats and an important focus for management actions. Given these behaviors, the exploitation of Bull Sharks from insular populations, such as Japan and Fiji, may instigate local decline that cannot readily be replenished by immigration, which can in turn affect ecosystem dynamics and functions. These data also supported the development of a genetic panel to ascertain the population of origin, which will be useful in monitoring the trade of fisheries products and assessing population-level impacts of this harvest.

3.
J Fish Biol ; 101(1): 302-307, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35475478

ABSTRACT

The giant freshwater whipray Urogymnus polylepis is a threatened species that is vulnerable to riverine and coastal marine pressures. Despite its threatened status, the range of U. polylepis is still being determined. In this study, photographic evidence of U. polylepis in Myanmar was provided through market surveys (2017-2018) and social media (Sharks and Rays of Rakhine Facebook page, 2021). Urogymnus polylepis is exposed to fisheries and habitat degradation pressures in Myanmar; therefore, conservation management is likely needed to ensure populations persist into the future.


Subject(s)
Sharks , Skates, Fish , Social Media , Animals , Conservation of Natural Resources , Ecosystem , Endangered Species , Fresh Water , Myanmar
SELECTION OF CITATIONS
SEARCH DETAIL
...