Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38168288

ABSTRACT

Spatial patterns of cells and other biological elements drive both physiologic and pathologic processes within tissues. While many imaging and transcriptomic methods document tissue organization, discerning these patterns is challenging, especially when they involve multiple elements in complex arrangements. To address this challenge, we present Spatial Patterning Analysis of Cellular Ensembles (SPACE), an R package for analysis of high-plex spatial data. SPACE is compatible with any data collection modality that records values (i.e., categorical cell/structure types or quantitative expression levels) at fixed spatial coordinates (i.e., 2d pixels or 3d voxels). SPACE detects not only broad patterns of co-occurrence but also context-dependent associations, quantitative gradients and orientations, and other organizational complexities. Via a robust information theoretic framework, SPACE explores all possible ensembles of tissue elements - single elements, pairs, triplets, and so on - and ranks the most strongly patterned ensembles. For single images, rankings reflect patterns that differ from random assortment. For sets of images, rankings reflect patterns that differ across sample groups (e.g., genotypes, treatments, timepoints, etc.). Further tools then thoroughly characterize the nature of each pattern for intuitive interpretation. We validate SPACE and demonstrate its advantages using murine lymph node images for which ground truth has been defined. We then use SPACE to detect new patterns across varied datasets, including tumors and tuberculosis granulomas.

2.
Immunol Rev ; 306(1): 8-24, 2022 03.
Article in English | MEDLINE | ID: mdl-34918351

ABSTRACT

A central question in immunology is what features allow the immune system to respond in a timely manner to a variety of pathogens encountered at unanticipated times and diverse body sites. Two decades of advanced and static dynamic imaging methods have now revealed several major principles facilitating host defense. Suborgan spatial prepositioning of distinct cells promotes time-efficient interactions upon pathogen sensing. Such pre-organization also provides an effective barrier to movement of pathogens from parenchymal tissues into the blood circulation. Various molecular mechanisms maintain effective intercellular communication among otherwise rapidly moving cells. These and related discoveries have benefited from recent increases in the number of parameters that can be measured simultaneously in a single tissue section and the extension of such multiplex analyses to 3D tissue volumes. The application of new computational methods to such imaging data has provided a quantitative, in vivo context for cell trafficking and signaling pathways traditionally explored in vitro or with dissociated cell preparations. Here, we summarize our efforts to devise and employ diverse imaging tools to probe immune system organization and function, concluding with a commentary on future developments, which we believe will reveal even more about how the immune system operates in health and disease.


Subject(s)
Immune System , Signal Transduction , Diagnostic Imaging , Humans , Mathematics
3.
J Cell Sci ; 133(5)2020 03 06.
Article in English | MEDLINE | ID: mdl-32144196

ABSTRACT

A hallmark of the mammalian immune system is its ability to respond efficiently to foreign antigens without eliciting an inappropriate response to self-antigens. Furthermore, a robust immune response requires the coordination of a diverse range of cells present at low frequencies within the host. This problem is solved, in part, by concentrating antigens, antigen-presenting cells and antigen-responsive cells in lymph nodes (LNs). Beyond housing these cell types in one location, LNs are highly organized structures consisting of pre-positioned cells within well-defined microanatomical niches. In this Cell Science at a Glance article and accompanying poster, we outline the key cellular populations and components of the LN microenvironment that are present at steady state and chronicle the dynamic changes in these elements following an immune response. This review highlights the LN as a staging ground for both innate and adaptive immune responses, while providing an elegant example of how structure informs function.


Subject(s)
Antigens , Lymph Nodes , Animals , Immunity
SELECTION OF CITATIONS
SEARCH DETAIL
...