Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 9(12): 1217-1222, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30613329

ABSTRACT

In solving the P-gp and BCRP transporter-mediated efflux issue in a series of benzofuran-derived pan-genotypic palm site inhibitors of the hepatitis C virus NS5B replicase, it was found that close attention to physicochemical properties was essential. In these compounds, where both molecular weight (MW >579) and TPSA (>110 Å2) were high, attenuation of polar surface area together with weakening of hydrogen bond acceptor strength of the molecule provided a higher intrinsic membrane permeability and more desirable Caco-2 parameters, as demonstrated by trifluoroacetamide 11 and the benchmark N-ethylamino analog 12. In addition, the tendency of these inhibitors to form intramolecular hydrogen bonds potentially contributes favorably to the improved membrane permeability and absorption. The functional group minimization that resolved the efflux problem simultaneously maintained potent inhibitory activity toward a gt-2 HCV replicon due to a switching of the role of substituents in interacting with the Gln414 binding pocket, as observed in gt-2a NS5B/inhibitor complex cocrystal structures, thus increasing the efficiency of the optimization. Noteworthy, a novel intermolecular S=O···C=O n → π* type interaction between the ligand sulfonamide oxygen atom and the carbonyl moiety of the side chain of Gln414 was observed. The insights from these structure-property studies and crystallography information provided a direction for optimization in a campaign to identify second generation pan-genotypic NS5B inhibitors.

2.
J Med Chem ; 60(10): 4369-4385, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28430437

ABSTRACT

The hepatitis C virus (HCV) NS5B replicase is a prime target for the development of direct-acting antiviral drugs for the treatment of chronic HCV infection. Inspired by the overlay of bound structures of three structurally distinct NS5B palm site allosteric inhibitors, the high-throughput screening hit anthranilic acid 4, the known benzofuran analogue 5, and the benzothiadiazine derivative 6, an optimization process utilizing the simple benzofuran template 7 as a starting point for a fragment growing approach was pursued. A delicate balance of molecular properties achieved via disciplined lipophilicity changes was essential to achieve both high affinity binding and a stringent targeted absorption, distribution, metabolism, and excretion profile. These efforts led to the discovery of BMS-929075 (37), which maintained ligand efficiency relative to early leads, demonstrated efficacy in a triple combination regimen in HCV replicon cells, and exhibited consistently high oral bioavailability and pharmacokinetic parameters across preclinical animal species. The human PK properties from the Phase I clinical studies of 37 were better than anticipated and suggest promising potential for QD administration.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/pharmacokinetics , Benzofurans/pharmacology , Benzofurans/pharmacokinetics , Hepacivirus/drug effects , Hepatitis C/drug therapy , Viral Nonstructural Proteins/antagonists & inhibitors , Allosteric Regulation/drug effects , Allosteric Site/drug effects , Animals , Antiviral Agents/chemistry , Benzofurans/chemistry , Dogs , Drug Discovery , Haplorhini , Hepatitis C/virology , Humans , Male , Molecular Docking Simulation , Rats , Rats, Sprague-Dawley , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
3.
Bioorg Med Chem ; 22(5): 1782-90, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24495863

ABSTRACT

Comprehensive structure activity relationship (SAR) studies were conducted on a focused screening hit, 2-(methylthio)-3-(phenylsulfonyl)-4H-pyrido[1,2-a]pyrimidin-4-imine (1, IC50: 4.0 nM), as 5-HT6 selective antagonists. Activity was improved some 2-4 fold when small, electron-donating groups were added to the central core as observed in 19, 20 and 26. Molecular docking of key compounds in a homology model of the human 5-HT6 receptor was used to rationalize our structure-activity relationship (SAR) findings. In pharmacokinetic experiments, compound 1 displayed good brain uptake in rats following intra-peritoneal administration, but limited oral bioavailability.


Subject(s)
Alzheimer Disease/drug therapy , Imines/pharmacokinetics , Receptors, Serotonin/therapeutic use , Animals , Humans , Imines/pharmacology , Molecular Docking Simulation , Rats , Structure-Activity Relationship
4.
J Comb Chem ; 8(5): 664-9, 2006.
Article in English | MEDLINE | ID: mdl-16961404

ABSTRACT

The application of parallel synthesis to lead optimization programs in drug discovery has been an ongoing challenge since the first reports of library synthesis. A number of approaches to the application of parallel array synthesis to lead optimization have been attempted over the years, ranging from widespread deployment by (and support of) individual medicinal chemists to centralization as a service by an expert core team. This manuscript describes our experience with the latter approach, which was undertaken as part of a larger initiative to optimize drug discovery. In particular, we highlight how concepts taken from the manufacturing sector can be applied to drug discovery and parallel synthesis to improve the timeliness and thus the impact of arrays on drug discovery.


Subject(s)
Combinatorial Chemistry Techniques , Drug Design
SELECTION OF CITATIONS
SEARCH DETAIL
...