Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 17(12)2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29182589

ABSTRACT

Current developments in exhaust gas aftertreatment led to a huge mistrust in diesel driven passenger cars due to their NOx emissions being too high. The selective catalytic reduction (SCR) with ammonia (NH3) as reducing agent is the only approach today with the capability to meet upcoming emission limits. Therefore, the radio-frequency-based (RF) catalyst state determination to monitor the NH3 loading on SCR catalysts has a huge potential in emission reduction. Recent work on this topic proved the basic capability of this technique under realistic conditions on an engine test bench. In these studies, an RF system calibration for the serial type SCR catalyst Cu-SSZ-13 was developed and different approaches for a temperature dependent NH3 storage were determined. This paper continues this work and uses a fully calibrated RF-SCR system under transient conditions to compare different directly measured and controlled NH3 storage levels, and NH3 target curves. It could be clearly demonstrated that the right NH3 target curve, together with a direct control on the desired level by the RF system, is able to operate the SCR system with the maximum possible NOx conversion efficiency and without NH3 slip.

2.
Sensors (Basel) ; 17(7)2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28704929

ABSTRACT

The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.

SELECTION OF CITATIONS
SEARCH DETAIL
...