Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 195
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38953218

ABSTRACT

The Chemical Assessment of Surfaces and Air (CASA) study aimed to understand how chemicals transform in the indoor environment using perturbations (e.g., cooking, cleaning) or additions of indoor and outdoor pollutants in a well-controlled test house. Chemical additions ranged from individual compounds (e.g., gaseous ammonia or ozone) to more complex mixtures (e.g., a wildfire smoke proxy and a commercial pesticide). Physical perturbations included varying temperature, ventilation rates, and relative humidity. The objectives for CASA included understanding (i) how outdoor air pollution impacts indoor air chemistry, (ii) how wildfire smoke transports and transforms indoors, (iii) how gases and particles interact with building surfaces, and (iv) how indoor environmental conditions impact indoor chemistry. Further, the combined measurements under unperturbed and experimental conditions enable investigation of mitigation strategies following outdoor and indoor air pollution events. A comprehensive suite of instruments measured different chemical components in the gas, particle, and surface phases throughout the study. We provide an overview of the test house, instrumentation, experimental design, and initial observations - including the role of humidity in controlling the air concentrations of many semi-volatile organic compounds, the potential for ozone to generate indoor nitrogen pentoxide (N2O5), the differences in microbial composition between the test house and other occupied buildings, and the complexity of deposited particles and gases on different indoor surfaces.

2.
ACS EST Air ; 1(6): 525-535, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38898933

ABSTRACT

Nitrous acid (HONO) is a key molecule in the reactive nitrogen cycle. However, sources and sinks for HONO are not fully understood. Particulate nitrate photochemistry has been suggested to play a role in the formation of HONO in the marine boundary layer (MBL). Here we investigate the impact of marine relevant organic compounds on HONO formation from aqueous nitrate photochemistry. In particular, steady-state, gas-phase HONO yields were measured from irradiated nitrate solutions at low pH containing marine-dissolved organic matter (m-DOM). m-DOM induces a nonlinear increase in HONO yield across all concentrations compared to that for pure nitrate solutions, with rates of HONO formation increasing by up to 3-fold when m-DOM is present. Furthermore, to understand the potential synergistic effects that may occur within complex samples such as m-DOM, mixtures of chromophoric (light-absorbing) and aliphatic (non-light-absorbing) molecular proxies were utilized. In particular, mixtures of 4-benzoylbenzoic acid (4-BBA) and ethylene glycol (EG) in acidic aqueous solutions containing nitrate showed more HONO upon irradiation compared to solutions containing only one of the molecular proxies. This suggests that synergistic effects in the HONO formation can occur in complex organic samples. Atmospheric implications of the results presented here are discussed.

3.
Nat Commun ; 15(1): 5326, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909017

ABSTRACT

Solid-water interfaces are crucial for clean water, conventional and renewable energy, and effective nuclear waste management. However, reflecting the complexity of reactive interfaces in continuum-scale models is a challenge, leading to oversimplified representations that often fail to predict real-world behavior. This is because these models use fixed parameters derived by averaging across a wide physicochemical range observed at the molecular scale. Recent studies have revealed the stochastic nature of molecular-level surface sites that define a variety of reaction mechanisms, rates, and products even across a single surface. To bridge the molecular knowledge and predictive continuum-scale models, we propose to represent surface properties with probability distributions rather than with discrete constant values derived by averaging across a heterogeneous surface. This conceptual shift in continuum-scale modeling requires exponentially rising computational power. By incorporating our molecular-scale understanding of solid-water interfaces into continuum-scale models we can pave the way for next generation critical technologies and novel environmental solutions.

4.
ACS EST Air ; 1(4): 259-272, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38633204

ABSTRACT

Phenol, a common semi-volatile compound associated with different emissions including from plants and biomass burning, as well as anthropogenic emissions and its derivatives, are important components of secondary organic aerosols (SOAs). Gas and aqueous phase reactions of phenol, in the presence of photochemical drivers, are fairly well understood. However, despite observations showing aromatic content within SOA size and mass increases during dust episodes, the heterogeneous reactions of phenol with mineral dusts are poorly understood. In the current study, surface reactions of phenol at the gas/solid interface with different components of mineral dust including SiO2, α-Fe2O3, and TiO2 have been investigated. Whereas reversible surface adsorption of phenol occurs on SiO2 surfaces, for both α-Fe2O3 and TiO2 surfaces, phenol reacts to form a wide range of OH substituted aromatic products. For α-Fe2O3 surfaces that have been nitrated by gas-phase reactions of nitric acid prior to exposure to phenol, unique compounds form on the surface including nitro-phenolic compounds. Moreover, additional surface chemistry was observed when adsorbed nitro-phenolic products were exposed to gas-phase SO2 as a result of the formation of adsorbed nitrite from nitrate redox chemistry with adsorbed SO2. Overall, this study reveals the extensive chemistry as well as the complexity of reactions of prevalent organic compounds leading to the formation of SOA on mineral surfaces.

5.
Environ Sci Process Impacts ; 26(3): 582-594, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38305769

ABSTRACT

Dibasic esters (DBEs) have recently become emerging indoor air pollutants due to their usage as a solvent for mixtures of paints and coatings. In this study, we explored the adsorption/desorption kinetics, heterogeneous interactions, and chemical transformations of dimethyl succinate (DMS, C6H10O4), a component of commercial dibasic ester solvent mixtures, on indoor relevant surfaces using transmission Fourier-transform infrared (FTIR) spectroscopy and high-resolution mass spectrometry (HRMS). Silica (SiO2) and rutile (TiO2) were used as proxies for window glass, and an active component in paint and self-cleaning surfaces, respectively. FTIR spectroscopy of these surfaces shows that DMS can interact with SiO2 and TiO2 through hydrogen bonding between the carbonyl oxygen and surface hydroxyl groups. The kinetics show fast adsorption of DMS onto these surfaces followed by slow desorption. Furthermore, new products formed observed on TiO2 surfaces in addition to molecularly adsorbed DMS. In particular, succinate (C5H7O) was observed binding to the surface in a bidentate chelating coordination mode as indicated by the appearance of νas(COO-) and νs(COO-) bands in the FTIR spectra. These absorption bands grow in intensity over time and the resulting product remains strongly adsorbed on the surface. The formation of adsorbed succinate is a result of a reaction with DMS on Lewis acid sites of the TiO2 surface. Overall, the slow desorption of these adsorbed species indicates that indoor surfaces can become long term reservoirs for dibasic esters and their surface products. Moreover, in the presence of ∼50% relative humidity, water displaces outer layers of adsorbed DMS on SiO2 and TiO2, while having no impact on the more strongly bound surface species.


Subject(s)
Silicon Dioxide , Water , Silicon Dioxide/chemistry , Water/chemistry , Spectroscopy, Fourier Transform Infrared , Solvents , Succinates , Adsorption
6.
J Phys Chem Lett ; 14(47): 10677-10684, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37988598

ABSTRACT

In-situ Raman spectroscopy of single levitated charged aqueous microdroplets irradiated by dual-beam (266 and 532 nm) lasers demonstrates that the nitrate anion (NO3-) can be depleted in the droplet through an energy transfer mechanism following excitation of sulfanilic acid (SA), a UV-absorbing aromatic organic compound. Upon 266 nm irradiation, a fast decrease of the NO3- concentration was observed when SA is present in the droplet. This photoinduced reaction occurs without the direct photolysis of NO3-. Instead, the rate of NO3- depletion was found to depend on the initial concentration of SA and the pH of the droplet. Based on absorption-emission spectral analysis and excited-state energy calculations, triplet-triplet energy transfer between SA and NO3- is proposed as the underlying mechanism for the depletion of NO3- in aqueous microdroplets. These results suggest that energy transfer mechanisms initiated by light-absorbing organic molecules may play a significant role in NO3- photochemistry.

7.
Environ Sci Technol ; 57(49): 20699-20707, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38010858

ABSTRACT

The use of household bleach cleaning products results in emissions of highly oxidative gaseous species, such as hypochlorous acid (HOCl) and chlorine (Cl2). These species readily react with volatile organic compounds (VOCs), such as limonene, one of the most abundant compounds found in indoor enviroments. In this study, reactions of HOCl/Cl2 with limonene in the gas phase and on indoor relevant surfaces were investigated. Using an environmental Teflon chamber, we show that silica (SiO2), a proxy for window glass, and rutile (TiO2), a component of paint and self-cleaning surfaces, act as a reservoir for adsorption of gas-phase products formed between HOCl/Cl2 and limonene. Furthermore, high-resolution mass spectrometry (HRMS) shows that the gas-phase reaction products of HOCl/Cl2 and limonene readily adsorb on both SiO2 and TiO2. Surface-mediated reactions can also occur, leading to the formation of new chlorine- and oxygen-containing products. Transmission Fourier-transform infrared (FTIR) spectroscopy of adsorption and desorption of bleach and terpene oxidation products indicates that these chlorine- and oxygen-containing products strongly adsorb on both SiO2 and TiO2 surfaces for days, providing potential sources of human exposure and sinks for additional heterogeneous reactions.


Subject(s)
Air Pollution, Indoor , Hypochlorous Acid , Humans , Limonene , Chlorine , Halogenation , Silicon Dioxide , Terpenes/chemistry , Gases , Oxygen
8.
RSC Adv ; 13(41): 28873-28884, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37790106

ABSTRACT

Minerals play a critical role in the chemistry occurring along the interface of different environmental systems, including the atmosphere/geosphere and hydrosphere/geosphere. In the past few decades, vibrational spectroscopy has been used as a probe for studying interfacial geochemistry. Here, we compare four different vibrational methods for probing physical and chemical features across different mineral samples and length scales, from the macroscale to nanoscale. These methods include Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR), Optical Photothermal Infrared (O-PTIR), Atomic Force Microscopy-Infrared (AFM-IR) and micro-Raman spectroscopy. The emergence of these micro-spectroscopic probes has offered new insights into heterogeneities within geochemical thin films and particles. These developments represent an important step forward for analyzing environmental interfaces and thin films as often these are assumed to be physically and chemically homogeneous. By comparing and integrating data across these measurement techniques, new insights into sample differences and heterogeneities can be gained. For example, interrogation of the various mineral samples at smaller length scales is shown to be particularly informative in highlighting unique chemical environments, including for chemically complex, multicomponent samples such as Arizona Test Dust (AZTD), as well as differences due to crystal orientation.

9.
J Am Chem Soc ; 145(41): 22317-22321, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37787586

ABSTRACT

The chemistry of pyruvic acid (PA) under thermal dark conditions is limited in bulk solutions, but in microdroplets it is shown to readily occur. Utilizing in situ micro-Raman spectroscopy as a probe, we investigated the chemistry of PA within aqueous microdroplets in a relative humidity- and temperature-controlled environmental cell. We found that PA undergoes a condensation reaction to yield mostly zymonic acid. Interestingly, the reaction follows a size-dependent sigmoidal kinetic profile, i.e., an induction period followed by reaction and then completion. The induction time is linearly proportional to the surface area (R2), and the maximum apparent reaction rate is proportional to the surface-to-volume ratio (1/R), showing that both the induction and reaction occur at the air-water interface. Furthermore, the droplet size is shown to be dynamic due to changes in droplet composition and re-equilibration with the relative humidity within the environmental cell as the reaction proceeds. Overall, the size-dependent sigmoidal kinetics, shown for the first time in microdroplets, demonstrates the complexity of the reaction mechanism and the importance of the air-water interface in the pyruvic acid condensation reaction.

10.
Sci Adv ; 9(41): eadh8263, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37831770

ABSTRACT

Wildfires are increasing in frequency, raising concerns that smoke can permeate indoor environments and expose people to chemical air contaminants. To study smoke transformations in indoor environments and evaluate mitigation strategies, we added smoke to a test house. Many volatile organic compounds (VOCs) persisted days following the smoke injection, providing a longer-term exposure pathway for humans. Two time scales control smoke VOC partitioning: a faster one (1.0 to 5.2 hours) that describes the time to reach equilibrium between adsorption and desorption processes and a slower one (4.8 to 21.2 hours) that describes the time for indoor ventilation to overtake adsorption-desorption equilibria in controlling the air concentration. These rates imply that vapor pressure controls partitioning behavior and that house ventilation plays a minor role in removing smoke VOCs. However, surface cleaning activities (vacuuming, mopping, and dusting) physically removed surface reservoirs and thus reduced indoor smoke VOC concentrations more effectively than portable air cleaners and more persistently than window opening.


Subject(s)
Air Pollution, Indoor , Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Smoke , Environmental Monitoring
11.
RSC Adv ; 13(33): 23147-23157, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37533784

ABSTRACT

Organic acids are prevalent in the environment and their acidity and the corresponding dissociation constants can change under varying environmental conditions. The impact of nanoconfinement (when acids are confined within nanometer-scale domains) on physicochemical properties of chemical species is poorly understood and is an emerging field of study. By combining infrared and Raman spectroscopies with molecular dynamics (MD) simulations, we quantified the effect of nanoconfinement in silica nanopores on one of the fundamental chemical reactions-the dissociation of organic acids. The pKa of formic and acetic acids confined within cylindrical silica nanopores with 4 nm diameters were measured. MD models were constructed to calculate the shifts in the pKa values of acetic acid nanoconfined within 1, 2, 3, and 4 nm silica slit pores. Both experiments and MD models indicate a decrease in the apparent acid dissociation constants (i.e., increase in the pKa values) when organic acids are nanoconfined. Therefore, nanoconfinement stabilizes the protonated species. We attribute this observation to (1) a decrease in the average dielectric response of nanoconfined aqueous solutions where charge screening may be decreased; or (2) an increase in proton concentration inside nanopores, which would shift the equilibrium towards the protonated form. Overall, the results of this study provide the first quantification of the pKa values for nanoconfined formic and acetic acids and pave the way for a unifying theory predicting the impact of nanoconfinement on acid-base chemistry.

12.
ACS Cent Sci ; 9(6): 1088-1103, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37396863

ABSTRACT

Sea spray aerosol (SSA) ejected through bursting bubbles at the ocean surface is a complex mixture of salts and organic species. Submicrometer SSA particles have long atmospheric lifetimes and play a critical role in the climate system. Composition impacts their ability to form marine clouds, yet their cloud-forming potential is difficult to study due to their small size. Here, we use large-scale molecular dynamics (MD) simulations as a "computational microscope" to provide never-before-seen views of 40 nm model aerosol particles and their molecular morphologies. We investigate how increasing chemical complexity impacts the distribution of organic material throughout individual particles for a range of organic constituents with varying chemical properties. Our simulations show that common organic marine surfactants readily partition between both the surface and interior of the aerosol, indicating that nascent SSA may be more heterogeneous than traditional morphological models suggest. We support our computational observations of SSA surface heterogeneity with Brewster angle microscopy on model interfaces. These observations indicate that increased chemical complexity in submicrometer SSA leads to a reduced surface coverage by marine organics, which may facilitate water uptake in the atmosphere. Our work thus establishes large-scale MD simulations as a novel technique for interrogating aerosols at the single-particle level.

13.
Phys Chem Chem Phys ; 25(30): 20557-20566, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37470700

ABSTRACT

Geochemical interfaces can impact the fate and transport of aqueous species in the environment including biomolecules. In this study, we investigate the surface chemistry of adsorbed nucleotides on two different minerals, hematite and goethite, using infrared spectroscopy and density functional theory (DFT) calculations. Attenuated total reflectance-Fourier transform infrared spectroscopy is used to probe the adsorption of deoxyadenosine monophosphate (dAMP), deoxyguanosine monophosphate (dGMP), deoxycytidine monophosphate (dCMP), and deoxythymidine monophosphate (dTMP) onto either hematite or goethite particle surfaces. The results show preferential adsorption of the phosphate group to either surface. Remarkably, surface adsorption of the four nucleotides onto either hematite or goethite have nearly identical experimental spectra in the phosphate region (900 to 1200 cm-1) for each mineral surface yet are distinctly different between the two minerals, suggesting differences in binding of these nucleotides to the two mineral surfaces. The experimental absorption frequencies in the phosphate region were compared to DFT calculations for nucleotides adsorbed through the phosphate group to binuclear clusters in either a monodentate or bidentate bridging coordination. Although the quality of the fits suggests that both binding modes may be present, the relative amounts differ on the two surfaces with preferential bonding suggested to be monodentate coordination on hematite and bidentate bridging on goethite. Possible reasons for these differences are discussed.

15.
Chem Sci ; 14(23): 6259-6268, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37325137

ABSTRACT

The hygroscopicity and pH of aqueous microdroplets and smaller aerosols control their impacts on human health and the climate. Nitrate depletion and chloride depletion through the partitioning of HNO3 and HCl into the gas phase are processes that are enhanced in micron-sized and smaller aqueous droplets and this depletion influences both hygroscopicity and pH. Despite a number of studies, uncertainties remain about these processes. While acid evaporation and the loss of HCl or HNO3 have been observed during dehydration, there is a question as to the rate of acid evaporation and whether this can occur in fully hydrated droplets at higher relative humidity (RH). To directly elucidate the kinetics of nitrate and chloride depletion through evaporation of HNO3 and HCl, respectively at high RH, single levitated microdroplets are probed with cavity-enhanced Raman spectroscopy. Using glycine as a novel in situ pH probe, we are able to simultaneously measure changes in microdroplet composition and pH over timescales of hours. We find that the loss of chloride from the microdroplet is faster than that of nitrate, and the calculated rate constants infer that depletion is limited by the formation of HCl or HNO3 at the air-water interface and subsequent partitioning into the gas phase.

16.
Phys Chem Chem Phys ; 25(26): 17306-17319, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37345428

ABSTRACT

Organic chromophores initiate much of daytime aqueous phase chemistry in the environment. Thus, studying the absorption spectra of commonly used organic photosensitizers is paramount to fully understand their relevance in environmental processes. In this work, we combined UV-Vis spectroscopy, 1H-NMR spectroscopy, quantum chemical calculations, and molecular dynamics simulations to investigate the absorption spectra of 4-benzoyl benzoic acid (4BBA), a widely used photosensitizer and a common proxy of environmentally relevant chromophores. Solutions of 4BBA at different pH values show that protonated and deprotonated species have an effect on its absorbance spectra. Theoretical calculations of these species in water clusters provide physical and chemical insights into the spectra. Quantum chemical calculations were conducted to analyze the UV-Vis absorbance spectra of 4BBA species using various cluster sizes, such as C6H5COC6H4COOH·(H2O)n, where n = 8 for relatively small clusters and n = 30 for larger clusters. While relatively small clusters have been successfully used for smaller chromophores, our results indicate that simulations of protonated species of 4BBA require relatively larger clusters of n = 30. A comparison between the experimental and theoretical results shows good agreement in the pH-dependent spectral shift between the hydrated cluster model and the experimental data. Overall, the theoretical and empirical results indicate that the experimental optical spectra of aqueous phase 4BBA can be represented by the acid-base equilibrium of the keto-forms, with a spectroscopically measured pKa of 3.41 ± 0.04. The results summarized here contribute to a molecular-level understanding of solvated organic molecules through calculations restricted to cluster models, and thereby, broader insight into environmentally relevant chromophores.

17.
Chem Rev ; 123(10): 6413-6544, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37186959

ABSTRACT

Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.

18.
Environ Sci Process Impacts ; 25(3): 484-495, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36789672

ABSTRACT

Minerals in groundwater interact with various chemical and biological species including organic matter, proteins, and prevalent oxyanions, resulting in surface coatings and thin films of these different components. Surface interactions and the surface adsorption of these components on both oxide and oxyhydroxide iron surfaces have been widely investigated using a variety of spectroscopic methods. Despite these numerous studies, there still remains uncertainty with respect to interactions between these individual components, as well as heterogeneities and phase segregations within these thin films. In this study, we investigate mixtures containing Fe-containing minerals, proteins, and oxyanions to better understand surface interactions and phase segregation using Atomic Force Microscopy PhotoThermal Infrared (AFM-PTIR) spectroscopy. The results of this study show that AFM-PTIR spectroscopy can identify both nano- and microscale heterogeneities present within these thin films that are difficult to discern with other more conventional techniques such as ATR-FTIR spectroscopy due to phase segregation and mineral surface interactions. Overall, AFM-PTIR spectroscopy provides insights into multi-component environmental films that are difficult to uncover using other methodologies. This method has the potential to differentiate between bound and unbound toxic species as well as biological components, including environmental DNA, which can be used to assess the fate and transport of these species in the environment.


Subject(s)
Minerals , Oxides , Microscopy, Atomic Force/methods , Spectrophotometry, Infrared/methods , Spectroscopy, Fourier Transform Infrared , Minerals/chemistry , Oxides/chemistry
19.
Phys Chem Chem Phys ; 25(5): 3930-3941, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36648281

ABSTRACT

The compound 6-methyl-5-hepten-2-one (6-MHO) is a product of skin oil ozonolysis and is of significance in understanding the role of human occupants in the indoor environment. We present a joint computational and experimental study investigating the adsorption of 6-MHO on two model indoor relevant surfaces, SiO2, a model for a glass window, and TiO2, a component of paint and self-cleaning surfaces. Our classical force field-based molecular dynamics, ab initio molecular dynamics simulations, and FTIR absorption spectra indicate 6-MHO can adsorb on to both of these surfaces via hydrogen and π-hydrogen bonds and is quite stable due to the linear geometry of 6-MHO. Detailed analysis of 6-MHO on the SiO2 surface shows that relative humidity does not impact surface adsorption and adsorbed water does not displace 6-MHO from the hydroxylated SiO2 surface. Additionally, the desorption kinetics of 6-MHO from the hydroxylated SiO2 surface is compared to other compounds found in indoor environments and 6-MHO is shown to desorb with a first order rate constant that is approximately four times slower than that of limonene, but six times faster than that of carvone. In addition, our joint results indicate 6-MHO forms a stronger interaction with the TiO2 surface compared to the SiO2 surface. This study suggests that skin oil ozonolysis products can partition to indoor surfaces leading to the formation of organic films.

20.
ACS Earth Space Chem ; 6(12): 3017-3030, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36561194

ABSTRACT

Organonitrates (ON) and nitroxy-organosulfates (NOS) are important components of secondary organic aerosols (SOAs). Gas-phase reactions of α-pinene (C10H16), a primary precursor for several ON compounds, are fairly well understood although formation pathways for NOS largely remain unknown. NOS formation may occur via reactions of ON and organic peroxides with sulfates as well as through radical-initiated photochemical processes. Despite the fact that organosulfates (OS) represent a significant portion of the organic aerosol mass, ON and NOS formation from OS is less understood, especially through nighttime heterogeneous and multiphase chemistry pathways. In the current study, surface reactions of adsorbed α-pinene-derived OS with nitrogen oxides on hematite and kaolinite surfaces, common components of mineral dust, have been investigated. α-Pinene reacts with sulfated mineral surfaces, forming a range of OS compounds on the surface. These OS compounds when adsorbed on mineral surfaces can further react with HNO3 and NO2, producing several ON and NOS compounds as well as several oxidation products. Overall, this study reveals the complexity of reactions of prevalent organic compounds leading to the formation of OS, ON, and NOS via heterogeneous and multiphase reaction pathways on mineral surfaces. It is also shown that this chemistry is mineralogy-specific.

SELECTION OF CITATIONS
SEARCH DETAIL
...